

JDSU Optical Network Tester ONT

Module-E, Jitter Module Specifications

......

i, 📀

Module-E10G

Module-E 10G/2.5G

Jitter Module 10G-E

Jitter Module 2.5G–D

Specifications

Interface Specifications

Optical Interfaces

For high rates, interface options exist for XFP pluggable or built-in fixed optics at 1310 and 1550 nm. Tunable XFP optics are supported. For low rates, the interface is SFP pluggable optics.

XFP or Built-in Optics

Supported high rates 9.953, 10.000, 10.313, 10.519, 10.664, 10.709, 10.755, 11.049, 11.095, 11.181, 11.270, and 11.318 G

Built-in Optics Specifications

Output level	1310 nm : -6 to -1 dBm
	1550 nm: -2 to +2 dBm
Receiver wavelength	1310 or 1550 nm
	1260 to 1580 nm
Sensitivity	1310 nm : -11 to -1 dBm
	1550 nm: -14 to -1 dBm
Max. input power (destructive)	+2 dBm
Connector types	Exchangeable adaptors
Tunable XFP wavelength	User selectable
SFP Optics	

Supported low rates

155.52, 622.08 Mbps, 1.063, 1.25, 2.125, 2.488, and 2.666 G

For Jitter Module interface specifications please see 10/11 Jitter and Wander Testing and 155M/2.5G Jitter and Wander Testing sections.

Electrical Interfaces

Reference Clock Outp	out
Output frequency	All rates f/16, f/64 switchable
Output level (AC coupled)	Single 400 mVpp
	differential 800 mVpp
Connector	Two SMAs/50 Ω

Unframed Testing

All available rates are offered with unframed pattern and BERT capabilities.

Mode

Terminate, non-intrusive Through mode

Bit rates

155.52, 622.08 Mbps, 1.063, 1.25, 2.125, 2.488, 2.666 G, 9.953, 10.000, 10.313, 10.519, 10.664, 10.709, 10.755, 11.049, 11.095, 11.181, 11.270, and 11.318 G

Test pattern

PRBS 2³¹-1, 2²³-1, 2¹⁵-1, 2¹¹-1, 2⁷-1 and inverted, PRBS 2³¹-1 IEEE, Digital Word 32 bits, Square Wave (Tx only); repeating 1s/0s editable 1 to 16 bits

Gene	rator	
	cy offset generation	±500.0 ppm
Step size		0.1 ppm
	lange mode	Step, Transition Ramp
Transitio	n Ramp	5 ppm in 25 ms
Alarm	Insertion	
Туре		LOS
Trigger		Continuous
Error	Insertion	
Туре	Bit errors (only appl	icable for unframed pattern)
Mode		Single error, rate
Rate		1×10^{-12} to 1×10^{-2}
Analy	zer	
	evel measurement resolu	ution 0.1 dBm
	the current optical input	
	vith time stamp.	level and the min/max
	cy offset measurement ra	inge ±200 ppm
	cy measurement resolution	5 11
		••
		ncy and the offset in ppm
and the min/max offset values in ppm with time stamp.		
Alarm	IS	
Туре	LOS, power o	verload, frequency range,
	no XFP/	SFP available, pattern loss
Errors	;	
Туре	Bit errors (only applicat	le for unframed pattern),
. 6	errored zero/one (only ap	plicable for PRBS pattern)
Intern	nediate bit error (only applicable to
	med pattern)	
In additi	on to the long term bit e	rror measurement,
interme	diate results are available	
Interval		1 s up to 3600 s
Results	Current/las	t interval, count and ratio
Desert		
	t Display of Errors	and Alarms
	rical Display	
Errors Alarms	Count, ratio, dur	ation (errored zeros/ones) Duration in seconds
Event	lict	Duration in Seconds
		mpc
Criteria	of all results with time sta s	tart, stop, duration, count
Visual	5 lt	Country duration, count

Viewing filters Events, durations, count

Graphical View

Display of all events as bar graphs versus time. Cursors allow		
easy identification and zooming (in and out) on results.		
Viewing filters	Events	
Time-axis scale	Second, minute, hour	

GMP CRC masks

Valid for GMP-CRC-5, GMP-CRC-8

Specifications cont'd.

OTN OTU2/OTU1 Testing

OTN Testing Modes

Terminate Mode

Generators and analyzers run at the same OTN rate.

Through Mode

Both intrusive and non-intrusive through mode are offered. The generator and analyzer run at the same OTN rate and the received traffic is terminated at the OTN layer and retransmitted with the transmitter. In non-intrusive through mode, all OTN layer information is unchanged, whereas for intrusive through mode, it can be selectively overwritten with the capabilities available in the OTN generator. The client signal is unchanged, retransmitted, and analyzed by the higher layer if support is available.

Wrapper/De-wrapper Test

Transmitter and receiver interfaces run at different rates. The Wrapper test is used to test the wrapper function for the device under test (DUT). The client signal is generated and the OTN signal with wrapped client is analyzed:

TX signal structure	RX signal structure
SONET/SDH	OTU2-ODU2-SONET/SDH
	OTU1-ODU1-SONET/SDH
PCS-MAC/IP	OTU2-ODU2-GFP-F-MAC/IP
PCS-MAC/IP	OTU2e-ODU2e-PCS-MAC/IP
PCS-FC2	OTU2e-ODU2e-PCS-FC2

The dewrapper test is used to test the de-wrapper function of a DUT. An OTN signal with wrapped client is generated and the dewrapped client signal is analyzed.

OTN Generator

Multiplexing map	pings	ODUO, ODU1, ODU2, ODUflex
Mapping types		AMP, BMP, or GMP
Stuffing simulatio	n	Independent at each layer
Timeslot base		1.25/2.5 G
Pattern	OTN bulk	client, higher layer test pattern
OTN bulk client	PRBS:	: 2 ³¹ -1, 2 ²³ -1, 2 ¹⁵ -1, 2 ¹¹ -1, 2 ⁷ ,
	2	³¹ –1 inv., 2 ²³ –1 inv., 2 ¹⁵ –1 inv.,
	2 ¹¹ -	1 inv., 2 ⁷ –1 inv. (conforming to
1	TU-T 0.15	0), and digital word 32-bit free
		programmable, null client
Scrambler		On/off
FEC generation		On/off

OTN Multiplexing Mappings

OTN multiplexing provides a technology to multiplex/ demultiplex lower bit rate clients into/from a higher bit rate OTN signal according to ITU-T G.709. The multiplexing functionality depends on the available software options:

- · Freely definable foreground channel with client generated by the subsequent ODU layer
- Null client background channels with PM-TTI generation and OCI, LCK, AIS generation
- · One optional stuffing adjustable null client user background channel

Stuffing Simulation

AMP, GMP, and ODUflex-mapped payloads allow client offset stimulation. At each layer of multiplexing, the stuffing can be independently adjusted. The offset stuffing range depends on multiplexing type and stuffing scheme.

AMP Stuffing

PM BIP

PM BEI

TCMi BIP

TCMi BEI

CRC-5

CRC-8

BIP masks

 1×10^{-12}

 1×10^{-12}

 $1 imes 10^{-12}$

 1×10^{-12}

1 × 10⁻⁹

 1×10^{-9}

Error Insertion Configuration

 $6.6 imes 10^{-5}$

 $6.6 imes10^{-5}$

 $6.6 imes10^{-5}$

6.6 × 10⁻⁵

 1×10^{-2}

 1×10^{-2}

Valid for SM BIP, PM BIP, TCMi

BIP (i = 1 to 6)

0.1

0.1

0.1

0.1

0.1

0.1

AMP Stuffi	ng		
Payload offset		–65.0ppm	to +65.0ppm
Stuffing Schem	nes	+1/0/-	1 or +2/0/-1
GMP Stuffi	ng		
Payload offset	-1.	.000x10 ⁶ ppm	1 to 0.000ppm
	lue of the GMP ma	pper 0.000	to 15232.000
ODUflex in	OPU2 Stuffi	na	
	d rate of the GMP	5	bps to 9.99 G
	alue of the GMP n		.001 to 15232
Alarm Inse			
Туре	OTU-AIS, OOF, L	OM. 00M.SM	-IAE, SM-TIM,
71	LOF, SM-BDI, S		
			I, FTFL-FWSD,
			, FTLFL-BWSF,
	TCMi-LTC, TCN	Ii- IAE, TCMi-1	IM, TCMi-BDI,
	TCMi-BIAE (i = 1 to 6), cl	ient signal fail
Mode			
Continuous			All alarms
Burst once/bur	rst continuous	All aları	ns except LOF,
		TIMS, 00	F, OOM, SD, SF
Burst alarms	Mf	rames with al	arm, N frames
		no alarm, M a	$nd N = 1 to 2^{31}$
Error Inser	tion	, , ,	
Туре		FAS, MFAS, SN	Л-BIP, SM-BEI,
.)[-	,		C correctable,
	FEC stress, FEC	,	,
			El (i = 1 to 6),
		CRC-5, C	RC-8, bit error
Mode	sin	igle error, rate	e, single burst,
		COL	ntinuous burst
Burst error	M fr	ames errors, l	N frames error
		free, M an	$M = 1 \text{ to } 2^{31}$
Rate			
Error name	Min. rate	Max. rate	Stepping
Random	1×10^{-10}	1×10^{-3}	Exponential
Bit	1×10^{-12}	1×10^{-2}	Exponential
FAS	$4.9 imes 10^{-12}$	1×10^{-3}	0.1
MFAS	3.0 × 10 ⁻¹¹	1×10^{-3}	0.1
SM BIP	1×10^{-12}	6.6 × 10 ⁻⁵	
SM BEI	1×10^{-12}	6.6 × 10 ⁻⁵	0.1
	1 10-12	((),10-5	0.1

BEI value	
	Values from 0 to 15. Valid for SM
	BEI, PM BEI, TCMi BEI ($i = 1$ to 6)
FEC Insertion Co	onfiguration
FECstress	Inserts the maximum number of
	errors possible into the OTU frame
	that the DUT can correct by a
	walking pattern that affects
	all bits in less than 2 seconds.
FECadvanced	Custom define the position for error
	insertion in the OTU frame, enabling
	correction capability testing below
	and above the correction limit.
Selectable parameter	rs Row, sub row, errored bytes
	per sub row, start position in
	sub row, byte error mask
Overhead Gene	eration
Byte Diagram	All bytes are statically
	programmable except MFAS,
	SM BIP, PM BIP, and TCM16 BIP
Message sequences	SM TTI, PM TTI, and TCM16 TTI:
	consisting of the SAPI (16 bytes),
	DAPI (16 bytes) and the operator
	specified (32 bytes)
TTI (SM/PM) Generat	ion 64 byte sequence
TCM16 TTI Generatio	on 64 byte sequence,
	6 simultaneous channels
(118 bytes) FTFL Generation	
	256 byte sequence
	, ,
	, ,
Payload structure ide (PSI) with MSI	ntifier User defined, payload type
Payload structure ide (PSI) with MSI PSI Generation	ntifier User defined, payload type identifier in clear text 256 byte sequence Freely defined single byte sequence
Payload structure ide (PSI) with MSI PSI Generation	ntifier User defined, payload type identifier in clear text 256 byte sequence
Payload structure ide (PSI) with MSI PSI Generation OH byte sequence	ntifier User defined, payload type identifier in clear text 256 byte sequence Freely defined single byte sequence
Payload structure ide (PSI) with MSI PSI Generation OH byte sequence	ntifier User defined, payload type identifier in clear text 256 byte sequence Freely defined single byte sequence of 16/32/64/128/256 frames
Payload structure ide (PSI) with MSI PSI Generation OH byte sequence OTN Analyzer Demultiplexing mapp	ntifier User defined, payload type identifier in clear text 256 byte sequence Freely defined single byte sequence of 16/32/64/128/256 frames
Payload structure ide (PSI) with MSI PSI Generation OH byte sequence OTN Analyzer Demultiplexing mapp De-mapping types	ntifier User defined, payload type identifier in clear text 256 byte sequence Freely defined single byte sequence of 16/32/64/128/256 frames
Payload structure ide (PSI) with MSI PSI Generation OH byte sequence OTN Analyzer Demultiplexing mapp De-mapping types Stuffing analysis	ntifier User defined, payload type identifier in clear text 256 byte sequence Freely defined single byte sequence of 16/32/64/128/256 frames ongs 0DU0, 0DU1, 0DU2, 0DUflex AMP, BMP, or GMP
Payload structure ide (PSI) with MSI PSI Generation OH byte sequence OTN Analyzer Demultiplexing mapp De-mapping types Stuffing analysis Timeslot base	ntifier User defined, payload type identifier in clear text 256 byte sequence Freely defined single byte sequence of 16/32/64/128/256 frames oings 0DU0, 0DU1, 0DU2, 0DUflex AMP, BMP, or GMP Independent at each layer
Payload structure ide (PSI) with MSI PSI Generation OH byte sequence OTN Analyzer Demultiplexing mapp De-mapping types Stuffing analysis Timeslot base Analysis pattern O	ntifier User defined, payload type identifier in clear text 256 byte sequence Freely defined single byte sequence of 16/32/64/128/256 frames oings ODU0, ODU1, ODU2, ODUflex AMP, BMP, or GMP Independent at each layer 1.25 G, 2.5 G
Payload structure ide (PSI) with MSI PSI Generation OH byte sequence OTN Analyzer Demultiplexing mapp De-mapping types Stuffing analysis Timeslot base Analysis pattern 0' OTN bulk client	ntifier User defined, payload type identifier in clear text 256 byte sequence Freely defined single byte sequence of 16/32/64/128/256 frames oings ODU0, ODU1, ODU2, ODUflex AMP, BMP, or GMP Independent at each layer 1.25 G, 2.5 G TN bulk client, higher layer test pattern
Payload structure ide (PSI) with MSI PSI Generation OH byte sequence OTN Analyzer Demultiplexing mapp De-mapping types Stuffing analysis Timeslot base Analysis pattern 0' OTN bulk client Pattern evaluation	ntifier User defined, payload type identifier in clear text 256 byte sequence Freely defined single byte sequence of 16/32/64/128/256 frames oings ODU0, ODU1, ODU2, ODUflex AMP, BMP, or GMP Independent at each layer 1.25 G, 2.5 G TN bulk client, higher layer test pattern See OTN Generator
Payload structure ide (PSI) with MSI PSI Generation OH byte sequence OTN Analyzer Demultiplexing mapp De-mapping types Stuffing analysis Timeslot base	ntifier User defined, payload type identifier in clear text 256 byte sequence Freely defined single byte sequence of 16/32/64/128/256 frames oings ODU0, ODU1, ODU2, ODUflex AMP, BMP, or GMP Independent at each layer 1.25 G, 2.5 G TN bulk client, higher layer test pattern See OTN Generator On/off
Payload structure ide (PSI) with MSI PSI Generation OH byte sequence OTN Analyzer Demultiplexing mapp De-mapping types Stuffing analysis Timeslot base Analysis pattern O OTN bulk client Pattern evaluation Descrambler FEC evaluation	ntifier User defined, payload type identifier in clear text 256 byte sequence Freely defined single byte sequence of 16/32/64/128/256 frames oings ODU0, ODU1, ODU2, ODUflex AMP, BMP, or GMP Independent at each layer 1.25 G, 2.5 G TN bulk client, higher layer test pattern See OTN Generator On/off
Payload structure ide (PSI) with MSI PSI Generation OH byte sequence OTN Analyzer Demultiplexing mapp De-mapping types Stuffing analysis Timeslot base Analysis pattern 0 OTN bulk client Pattern evaluation Descrambler FEC evaluation FEC correction OTN Demultipl	ntifier User defined, payload type identifier in clear text 256 byte sequence Freely defined single byte sequence of 16/32/64/128/256 frames oings ODU0, ODU1, ODU2, ODUflex AMP, BMP, or GMP Independent at each layer 1.25 G, 2.5 G TN bulk client, higher layer test pattern See OTN Generator On/off On/off On/off exing Mappings
Payload structure ide (PSI) with MSI PSI Generation OH byte sequence OTN Analyzer Demultiplexing mapp De-mapping types Stuffing analysis Timeslot base Analysis pattern 0' OTN bulk client Pattern evaluation Descrambler FEC evaluation FEC correction OTN Demultipl Freely definable tribu	ntifier User defined, payload type identifier in clear text 256 byte sequence Freely defined single byte sequence of 16/32/64/128/256 frames oings ODU0, ODU1, ODU2, ODUflex AMP, BMP, or GMP Independent at each layer 1.25 G, 2.5 G TN bulk client, higher layer test pattern See OTN Generator On/off On/off On/off exing Mappings itary timeslots
Payload structure ide (PSI) with MSI PSI Generation OH byte sequence OTN Analyzer Demultiplexing mapp De-mapping types Stuffing analysis Timeslot base Analysis pattern 0 OTN bulk client Pattern evaluation Descrambler FEC evaluation FEC correction OTN Demultipl Freely definable tribu Payload type 20 (2.5	ntifier User defined, payload type identifier in clear text 256 byte sequence Freely defined single byte sequence of 16/32/64/128/256 frames oings ODU0, ODU1, ODU2, ODUflex AMP, BMP, or GMP Independent at each layer 1.25 G, 2.5 G TN bulk client, higher layer test pattern See OTN Generator On/off On/off On/off exing Mappings
Payload structure ide (PSI) with MSI PSI Generation OH byte sequence OTN Analyzer Demultiplexing mapp De-mapping types Stuffing analysis Timeslot base Analysis pattern 0 OTN bulk client Pattern evaluation Descrambler FEC evaluation FEC correction OTN Demultipl Freely definable tribu Payload type 20 (2.5 (1.25 G time slots)	ntifier User defined, payload type identifier in clear text 256 byte sequence Freely defined single byte sequence of 16/32/64/128/256 frames oings ODU0, ODU1, ODU2, ODUflex AMP, BMP, or GMP Independent at each layer 1.25 G, 2.5 G TN bulk client, higher layer test pattern See OTN Generator On/off On/off On/off exing Mappings itary timeslots
Payload structure ide (PSI) with MSI PSI Generation OH byte sequence OTIN Analyzer Demultiplexing mapp De-mapping types Stuffing analysis Timeslot base Analysis pattern 0 OTIN bulk client Pattern evaluation Descrambler FEC evaluation FEC correction OTIN Demultipl Freely definable tribu Payload type 20 (2.5 (1.25 G time slots) AMP Stuffing	ntifier User defined, payload type identifier in clear text 256 byte sequence Freely defined single byte sequence of 16/32/64/128/256 frames oings ODU0, ODU1, ODU2, ODUflex AMP, BMP, or GMP Independent at each layer 1.25 G, 2.5 G TN bulk client, higher layer test pattern See OTN Generator On/off On/off exing Mappings tary timeslots G time slots) and payload type 21
Payload structure ide (PSI) with MSI PSI Generation OH byte sequence OTN Analyzer Demultiplexing mapp De-mapping types Stuffing analysis Timeslot base Analysis pattern 0 OTN bulk client Pattern evaluation Descrambler FEC evaluation FEC correction OTN Demultipl Freely definable tribu Payload type 20 (2.5 (1.25 G time slots) AMP Stuffing Receive offset	ntifier User defined, payload type identifier in clear text 256 byte sequence Freely defined single byte sequence of 16/32/64/128/256 frames oings ODU0, ODU1, ODU2, ODUflex AMP, BMP, or GMP Independent at each layer 1.25 G, 2.5 G TN bulk dient, higher layer test pattern See OTN Generator On/off On/off exing Mappings Itary timeslots G time slots) and payload type 21
Payload structure ide (PSI) with MSI PSI Generation OH byte sequence OTN Analyzer Demultiplexing mapp De-mapping types Stuffing analysis Timeslot base Analysis pattern 0 OTN bulk client Pattern evaluation Descrambler FEC evaluation FEC correction OTN Demultipl Freely definable tribu Payload type 20 (2.5 (1.25 G time slots) AMP Stuffing	ntifier User defined, payload type identifier in clear text 256 byte sequence Freely defined single byte sequence of 16/32/64/128/256 frames oings ODU0, ODU1, ODU2, ODUflex AMP, BMP, or GMP Independent at each layer 1.25 G, 2.5 G TN bulk dient, higher layer test pattern See OTN Generator On/off On/off exing Mappings Itary timeslots G time slots) and payload type 21 In ppm Positive, double positive,
Payload structure ide (PSI) with MSI PSI Generation OH byte sequence OTIN Analyzer Demultiplexing mapp De-mapping types Stuffing analysis Timeslot base Analysis pattern 0 OTIN bulk client Pattern evaluation Descrambler FEC evaluation FEC correction OTIN Demultipl Freely definable tribu Payload type 20 (2.5 (1.25 G time slots) AMP Stuffing Receive offset	ntifier User defined, payload type identifier in clear text 256 byte sequence Freely defined single byte sequence of 16/32/64/128/256 frames oings 0DU0, 0DU1, 0DU2, 0DUflex AMP, BMP, or GMP Independent at each layer 1.25 G, 2.5 G TN bulk client, higher layer test pattern See 0TN Generator On/off On/off exing Mappings Itary timeslots G time slots) and payload type 21 In ppm Positive, double positive, negative, summary
Payload structure ide (PSI) with MSI PSI Generation OH byte sequence OTN Analyzer Demultiplexing mapp De-mapping types Stuffing analysis Timeslot base Analysis pattern 0 OTN bulk client Pattern evaluation Descrambler FEC evaluation FEC correction OTN Demultipl Freely definable tribu Payload type 20 (2.5 (1.25 G time slots) AMP Stuffing Receive offset	ntifier User defined, payload type identifier in clear text 256 byte sequence Freely defined single byte sequence of 16/32/64/128/256 frames oings ODU0, ODU1, ODU2, ODUflex AMP, BMP, or GMP Independent at each layer 1.25 G, 2.5 G TN bulk client, higher layer test pattern See OTN Generator On/off On/off exing Mappings Itary timeslots G time slots) and payload type 21 In ppm Positive, double positive,

Specifications cont'd.

GMP Stuffing

Nominal payload rat	te In bit/s
Effective payload rat	te In bit/s
Payload offset	In ppm
Cm value	Nominal, effective, Cm min, Cm max
Stuffing counts	Positive, double positive, negative,

double negative, unchanged, new value Alarm Detection

Туре	OTU-AIS, LOF, OOF, LOM, OOM, SM-IAE,
	SM-TIM, SM-BDI, SM-BIAE, ODU-AIS,
	ODU-OCI, ODU-LCK, PM-TIM, PM-BDI,
	FTFL-FWSD, FTFL-FWSF, FTFL-BWSD,
	FTLFL-BWSF, TCMi-AIS, TCMi-OCI, TCMi-LCK,
	TCMi-LTC, TCMi- IAE, TCMi-TIM, TCMi-BDI,
	TCMi-BIAE (i = 1 to 6), payload type
	Mismatch, client signal fail, GMP loss of sync,
	GMP Cm =0, pattern loss, delay pattern loss

Error Detection

Τv

FAS, MFAS, SM-BIP, SM-BEI, FEC
Uncorrectable word, FEC
correctable word, FEC
correctable symbol, FEC
correctable bit, PM-BIP, PM- BEI,
TCMi-BIP, TCMi-BEI ($i = 1$ to 6),
GMP CRC-5, GMP CRC-8, Bit error with
configurable intermediate interval duration

Intermediate Bit error

In addition to the long-term bit error measurement, intermediate results are available.

Interval	1 to 3600 s
Results	Current/previous interval, count, and ratio

Error Detection Measurement

Validation of data for error measurement occurs after frame alignment, descrambling, and FEC computation and correction. Resolution 100 ms

Overhead Evaluation

Byte diagram display of the complete overhead Message sequences SM TTI, PM TTI, TCM1..6 TTI display of the 64 byte ASCII sequence of SAPI, DAPI, and Operator field TIM evaluation on/off; evaluation on can be SAPI or DAPI or SAPI+DAPI

Set SAPI and DAPI expectation values in traces SM TTI, PM TTI, TCM1...6 TTI

TCM1..6 evaluation on/off; simultaneous evaluation of all 6 TCM channels

FTFL forward/backward (FW/BW) fault indication, operator identifier and operator-specific fields

Display payload structure identifier (PSI) bytes, payload type identifier (PT) clear text and multiplex structure identifier (MSI) bytes clear text

PT expectation value editable as mismatch criterion

Capture and display selectable single byte sequence of up to 256 frames

Result Display of Alarms and Errors

Numerical Display

Errors Count, ratio, duration (errored zeros/ones) Alarms Duration in seconds Event List Display of all results with time stamps Criteria Start, stop, duration, count

viewing filters	events, durations, count
Graphical View	
Display of all events as bar graphs	s versus time. Cursors allow
easy identification and zooming (in and out) on results.
Viewing filters	Events
Time axis scale	Second, minute, hour

General Communication Channel (GCC) Capture The management information between network element and termination equipment is transported in the GCCs in the OTN overhead. With this feature, the transmitted information can be captured in real-time. The capture file is stored locally and can be exported.

Captured fields	GCC0, GCC1, GCC2, GCC1+2
Captured format	Raw
Capture size	Up to 500 MB
Trigger	Manual

Performance Analysis

ITU-T G.8201 and M.2401 performance analysis and G.798 signal quality supervision (SQS) are optionally performed.

G.8201/M.2401 Performance Analysis Results Display

Path and Tandem Conr Analysis	nection Monitoring	
Near-end performance results	EFS, ES, SES, UAS, BBE, EB	
Far-end performance results	EFS, ES, SES, UAS, BBE, EB, Path UAS (G.8201 only)	
A pass/rejected verdict is given	for each analysis.	
Results are displayed in second	s and ratio.	
G.8201 Configuration		
HRP allocation	0.10000 to 100.00000%	
UAS limit	0 to 100,000 secs	
UAS mode		
Individual/global		
SESR APO, BBER APO	Displayed	
M.2401 Configuration		
HRP allocation	0.10000 to 100.00000%	
APO multiplier	0.10000 to 10.00000%	

UAS limit0 to 100,000 secsSESR APO, BBER APODisplayedSES BISPO, BBE BISPODisplayed

G.798 Signal Quality Supervision Results Display

Section, Path, and Tandem Connection Monitoring Analysis

 Near-end analysis
 Good seconds, bad seconds, degraded

 [SM/PM/TCMi-BIP]
 seconds, alarm seconds, dDEG count

 Far-end analysis
 Good seconds, bad seconds, degraded

 [SM/PM/TCMi-BIP]
 seconds, alarm seconds, dDEG count

 seconds, alarm seconds, dDEG count
 seconds, alarm seconds, dDEG count

SQS configuration	
DEG threshold	Absolute/relative
Absolute range	1 to 82,026
DEGM threshold	2 to 10

Service Disruption Test

To analyze service disruption times, a high-speed event list as a result of all detected events is generated. Disruption events at all layers of the OTN hierarchy are monitored simultaneously.

Result Display of Disruptions

Numerical Display

Total number of disruptions, begins with timestamp of first disruption and ends with a timestamp of last disruption.

Statistics

Shortest disruption time (with timestamp) in msec Longest disruption time (with timestamp) in msec Average disruption time in msec

Event List

Display of all results w	ith time stamps and duration	
Logging modes	No logging, disruption events	
	only, distribution, and sensor	
	Events	
Viewing filters	Events, durations	

Sensor to Trigger Service Disruption test, Selectable

Alarms	LOS, OTU-IAS, LOF, OOF, LOM, OOM,
	SM-IAE, SM-BDI, SM-BIAE, ODU-AIS,
	ODU-OCI, ODU-LCK, PM-BDI
Errors	FAS, MFAS, SM-BEI, SM-BIP, PM-BIP,
	PM-BEI, bit error/pattern loss
Event sample resoluti	ion 100 μs
	0.1 to 100,000 ms

Disruption Measurement	Configuration
-------------------------------	---------------

Separation time	0.1 to 100,000.0 ms	
Threshold time	0.0 to 100,000.0 ms	
Separation time starts at the end of the last event and is		
used to determine if the following event is a continuation of		
the same disruption (event occurs within separation time) or		

the same disruption (event occurs within separation time) o the start of the next one (event occurs after separation time has elapsed).

Transfer Delay Measurement

A proprietary payload pattern with measurement range of 0s to 40s is used. Transfer delay is measured between ports within the same mainframe.

Numerical Display

Current transfer delay in msec with accuracy	100 ns
of 1 µs and resolution	
Minimum transfer delay (with timestamp)	

Maximum transfer delay (with timestamp)

OTN-ODU MultiChannel

The OTN-ODU MultiChannel optional capability enables the parallel generation and analysis of multiple ODU tributaries. The following tests for an in-depth ODU analysis can be performed:

- Stuffing analysis
- · Alarm and error test
- · Overhead analysis
- TCM analysis
- Service-disruption analysis

OTN layer functionality is as described in OTU2/OTU1 Testing. The ODU layer MultiChannel capabilities and differences with the single channel OTN application are described below:

Tributary Channel Configuration

Signal structure	Tributary channels can be freely
	assigned as ODUO, ODU1, ODU1mux
	with ODUO, and ODUflex
LO ODTUG	Payload type 20 or 21
Tributary allocation	Channels can be freely assigned to
	tributary slots
ODTU mapping	AMP, GMP
Payload mapping	BMP, GMP
Payload test pattern	PRBS: 2 ³¹ -1, 2 ²³ -1, 2 ³¹ -1 inv.,
	2 ²³ -1 inv.

ODU MultiChannel Stuffing Simulation

AMP, GMP and ODUflex mapped payloads allow client offset simulation. At each layer of multiplexing the stuffing can be independently adjusted. The offset stuffing range is dependent on multiplexing type and stuffing scheme.

AMP Stuffing

ODTU offset	-48.0 ppm to +83.0 ppm		
Payload offset	-65.0 ppm to +65.0 ppm		
Stuffing Schemes	+1/0/-1 or +2/0/-1		
GMP Stuffing			
ODTU offset	-1.000x10 ⁶ ppm to 4219.410 ppm		
Payload offset	-1.000x10 ⁶ ppm to 0.000 ppm		
Nominal (m value of t	he GMP 0.000 to 15232.000		

Nominal Cm value of the GMP	0.000 to 15232.000
mapper	
ODUG ODUD CH. (C	

ODUflex in OPU2 Stuffing

Pavload mapping

ODU MultiChannel Alarm and Error Insertion

Alarms and errors can be configured for insertion on select channels, multiple channels simultaneously, or multiple insertion types triggered concurrently.

Error name	Min rate	Max rate	Stepping
FAS	$4.9 imes 10^{-12}$	1×10^{-3}	0.1
MFAS	3.0 × 10 ⁻¹¹	1×10^{-3}	0.1
PM BIP	1×10^{-12}	$6.5 imes 10^{-5}$	0.1
PM BEI	1×10^{-12}	$6.5 imes 10^{-5}$	0.1
TCMi BIP	1×10^{-12}	$6.5 imes10^{-5}$	0.1
TCMi BEI	1×10^{-12}	$6.5 imes 10^{-5}$	0.1

ODU Error Insertion Configuration

BIP masks	Valid for PM BIP, TCMi BIP ($i = 1$ to 6)
BEI value	Values from 0 to 15.
	Valid for PM BEI, TCMi BEI ($i = 1$ to 6)

ODU MultiChannel Overhead Generation All defined channels have the following capability:

Byte diagram	All bytes are statically programmable	
	except MFAS, PM BIP, and TCM16 BIP	
Message sequences	PM TTI, and TCM16 TTI:	
	consisting of the SAPI (16 bytes),	
	DAPI (16 bytes) and the	
	operator specified (32 bytes)	
PM TTI generation	Auto or User 64 byte sequence	
TCM16 TTI generat	tion Auto or User 64 byte sequence,	
	6 simultaneous channels	
FTFL free definable	forward/backward (FW/BW) fault indica-	
tion, operator ident	ifier (9 bytes) and operator-specific field	
(118 bytes)		
FTFL generation	256 byte sequence	
Payload structure id	lentifier User defined, payload type	
(PSI) with MSI	identifier in clear text	
PSI Generation	256 byte sequence	
ODU MultiChannel Evaluation Configuration		
Channels	Enable/disable evaluated channels	
Payloads	Enable/disable evaluated payloads	

ODU MultiChannel Stuffing Analysis

AMP Stuffing

Receive offset	In ppm
Stuffing counts	Positive, double positive,
	negative, summary
	Counts and duration in sec
CHID Charles	

GMP Stuffina

Nominal payload rate		In bit/s
Effective payload rate		In bit/s
Payload offset		In ppm
(m value	Nominal effective (mmin)	(m max

ODU Multichannel Result Display of Alarms

and Errors

Numerical Display

Duration in seconds is displayed for each alarm. Count, ratio, and duration in seconds are displayed for each error.

Event List

BMP

Display of all results with time stamps

Criteria	Start, stop, duration, count
Viewing filters	Events, channels, durations, count

Tabular View

Display of all alarm durations and error counts across all channels.

ODU MultiChannel Alarm and Error

Detection

Alarms and errors are simultaneously monitored across all channels

ODU MultiChannel Overhead Evaluation

Byte diagram display of the complete overhead per channel Message sequences per channel; PM TTI, TCM1..6 TTI display of the 64 byte ASCII sequence of SAPI, DAPI, and Operator field TIM evaluation on/off; Evaluation On can be SAPI or DAPI or SAPI+DAPI

Set SAPI and DAPI expectation values in traces SM TTI, PM TTI, TCM1...6 TTI

TCM1..6 evaluation on/off; simultaneous evaluation of all TCM channels. TCM Channels are assigned one per tributary channel

FTFL forward/backward (FW/BW) fault indication, operator identifier and operator-specific fields

Display payload structure identifier (PSI) bytes, payload type identifier (PT) clear text and multiplex structure identifier (MSI) bytes clear text

PT expectation value editable as mismatch criterion

ODU MultiChannel Service Disruption Test Disruption events on all channels of the ODU hierarchy are monitored simultaneously. Channels can be selectively enabled or disabled for Service disruption evaluation.

ODU MultiChannel Result Display of Disruptions

Summary Numerical Display

Total disruptions (timestamps for begins of first disruption, end of last disruption), channel with max disruptions, and count of max disruptions, total channels with disruption, total channels above threshold, total channels evaluated Statistics

Shortest disruption time (with timestamp) in msec, and related channel

Longest disruption time (with timestamp) in msec, and related channel

Average disruption time in msec

Per Channel Numerical Display

Total disruptions (timestamps for begins of first disruption, end f last disruption

Statistics

Shortest disruption time (with timestamp) in msec, and related channel

Longest disruption time (with timestamp) in msec, and

related channel

Average disruption time in msec

Event List

Display of all results with Channel, timestamps, and duration Logging modes No logging, disruption events Only, sensor events only,

Disruption and sensor events

Events, channels, durations

Viewing filters Tabular View

Display of all disruptions across all channels.

Statistics count, shorted, longest, average, total duration, threshold

Sensor to Trigger Service Disruption test, Selectable

Alarms

LOS, LOF, OOF, LOM, OOM, ODU-AIS, ODU-OCI, ODU-LCK, PM-BDI FAS, MFAS, PM-BIP, PM-BEI, Bit error/pattern loss

Errors Event sample resolution

100 µs 0.1 to 100,000 ms

GFP Testing

GFP-F – Generic Frame Procedure (Framed) Application

The GFP functionality provides Ethernet MAC encapsulation and mapping/de-mapping of GFP to SDH/SONET Virtual Concatenation or ODUO, ODUflex, or OTU2.

Specifications cont'd.

Specifications cont'd.

Implementation is in accordance with ITU-T G.7041, G.707, and ANSI T1.105.02 GFP-F (frame-mapped Ethernet). The functionality encompasses:

- Generation and analysis of GFP frame types
- Core header processing
- Payload-type header processing
- Frame-based Ethernet MAC frame encapsulation
- Error and alarm processing

Generator

Tx payload scrambler	On/off
Data frame	
PFI	Payload FCS on/off
EXI	No extension header, linear
	extension header
UPI	User-editable with clear text

decode as per G.7041

Data Frame Linear Extension Header

CID	00 to FF
Spare	00 to FF
Management frame	
PFI	Payload FCS on/off
EXI	No extension header, linear
	extension header
Management Fram	e Linear Extension Header
CID	00 to FF
Spare	00 to FF
Alarm Insertion	
Туре	LFD, CSF-LCS, CSF-LCCS, FDI, RDI
	continuous
Trigger	1 frame every 100 to 1,000 ms
Management frame rate	On/off
Terminate with DCI	
Error Insertion	
Туре	
Core header	Single, multiple
Type header	Single, multiple
Extension header	Single, multiple
Payload FCS	Single
Trigger	Single, rate
Rate	1.0E-9 to 0.1E0
Transmit Statistics	;
Frame counts	Total frames, total data frames,
total	management frames, idle frames
Evaluation	Count, rate
Total GFP bandwidth	Current, average
Total GFP utilization	Current, average
Analyzer	
Rx payload scrambler	On/off
Data Frame	
EXI	No extension header, linear
	Extension header
UPI reference	User editable
Data frame linear extensi	on header filter

CID filter

CID

Spare filter

Spare	00 to FF
Client Frame	
EXI	No extension header, linear
	extension header
Client Frame Line	ar Extension Header Filter
CID filter	On/off
Spare filter	On/off
CID	00 to FF
Spare	00 to FF
Alarm Detection	
Alarm types	LFD, CSF-LCS, CSF-LCCS, FDI, RDI
Evaluation	Duration
Error Detection	
Error types	Core header single,
	type header single and multiple,
	extension header single &
	multiple, payload FCS
Evaluation	Count, ratio
Receive Statistics	All Frames
Frame type	Total frames, total data frames,
tota	l management frames, idle frames
Payload	FCS frames
Evaluation	Count, rate
Total GFP bandwidth	Current, average
Total GFP utilization	Current, average
Receive Statistics	Filtered Frames
Frame type	Total frames, total data frames,
	Total management frames,
	CSF-LCS frames, CSF-LCCS frames,
	Client DCI frames, client fdi
	frames, client RDI frames
Evaluation	Count, rate
Result Display of	Alarms and Errors
Numerical Display	
Duration in seconds is di	isplayed for each alarm
Count and ratio is displa	yed for each error
Event List	
Display of all results wit	
Criteria	Start, stop, duration, count
Viewing filters	Events, durations, count
Graphical View	
	par graphs versus time. Cursors allow
Viewing filters	cooming (in and out) on results. Events
Time axis scale	Second, minute, hour
TITLE GYIS SCOLE	Second, Initiale, nour

GFP-T – Generic Frame Procedure Transparent

The GFP-T functionality provides timing transparent transcoding (TTT) of Gigabit Ethernet into OPU0 according to ITU-T G.709/Y.1331.

The functionality encompasses:

- Generation and analysis of superblocks
- Transparent Gigabit Ethernet mapping
- Error and alarm processing

On/off

On/off

00 to FF

The functionality is as described in GFP-F with additional specifications below.

Generator	
Superblocks per frame	1 to 10
Error insertion	
Туре	Correctable CRC, uncorrectable CRC
Trigger	Single error, rate
Rate	1.0E-9 to 0.1E0
Transmit Superb	olock Statistics
Total superblocks	Count, rate
Analyzer	
Error Detection	
Туре	CRC-16 correctable, CRC-16
	uncorrectable, 10B_ERR
Evaluation	Count, ratio
Receive Superblock St	tatistics
Туре	Total superblocks, 65B_PAD codes, 10B_ERR codes
Evaluation	Count, rate

10GigE LAN Testing

PCS 64B/66B Testing

PCS Configuration	
Pattern	PCS pattern or client signal
	from higher layer application
PCS pattern	A-seed, B-seed
Scrambler	On/off
Descrambler	On/off
Disable Hi BER detection	On/off
TX Ignore link faults	On/off
Minimum inter-packet gap of	ontrol 8 to 127 bytes (only
Minimum inter-packet gap tl	nreshold available for higher
	layer testing)
	5 to 255 bytes
Testing modes	Terminate, through

Terminate Mode

Generators and analyzers run at the same PCS rate. **Through Mode**

Non-intrusive through mode is offered. The generator and analyzer run at the same PCS rate and the received traffic is terminated at the PHYS layer and retransmitted with the transmitter. In non-intrusive through mode all PCS layer information is unchanged. The client signal is unchanged, retransmitted, and analyzed by the higher layer if support is available.

PCS Generator

Simultaneous alarms and error alarm insertion is supported Alarm Insertion

Туре	LOBL (loss of block lock), high BER (high bit error rate), LF/RF (local and remote fault)
Mode	Continuous, single burst,
	continuous burst
Burst alarms	M = on, N = off
LOBL N, M	1 to 4,294,967,295 blocks
HI BER N, M	1 to 219,902 x 125 µs
LF/RF N, M	2 to 4,294,967,294 events
Error Insertion	

Specifications cont'd.

user c pay	sync header, invalid block type, ontrol block, line errored frame, yload block error (only available if PCS pattern)
Ir	nvalid sync header, invalid block
User defined inserted value	s type, user control block
Trigger (all errors)	Single error, rate
Trigger (except payload	Continuous, single burst,
block error)	continuous burst, single burst
	rate, continuous burst rate
Rate alarms	1 x 10 ⁻¹⁰ to 9.9 $ imes$ 10 ⁻³
Burst alarms	M = on, N = off
N, M	1 up to 4,294,967,295 events

PCS Analyzer

Alarm Detection

 Type
 LOBL, high BER, LF/RF, link down (only available for higher layer testing), IPG violation (only available for higher layer testing), pattern loss (only available if PCS pattern)

 Evaluation
 Duration in seconds

 Error Detection
 Invalid sync header, errored block, invalid block, invalid block type,

LOBL event, high BER event, error propagation, line error frame, LF/RF fault event, IPG violation event (if higher layer traffic), payload block error (only available for PCS pattern)

Evaluation (depends on type) Count, rate, ratio, seconds **Result Display of Alarms and Errors**

Numerical Display

Duration in seconds is displayed for each alarm Count, rate, ratio and duration in seconds are displayed depending on error type

Display of all results with time stamps

Event List

Criteria Start, stop, duration, count Viewing filters Events, durations, count Graphical View Display of all events as bar graphs versus time. Cursors allow easy identification and zooming (in and out) on results. Viewing filters Events Time axis scale Second, minute, hour **PCS** Statistics link Link bandwidth and utilization can be measured with/without minimum IPG. Tx/Rx total link bandwidth Rate in Kbps, Mbps Tx/Rx link utilization ratio in % 64B/66B Transmit block types Total, data, control Transmit control block types Block format and type Receive block types Total, data, control, good, errored, invalid Receive control block types Block format and type

Evaluation (depends on type)	Count, rate, ratio
Reconciliation	
Transmit Ordered Sets	Total, LF, RF
Receive Ordered sets	Total, LF, RF
Evaluation	Count, rate

Capture 64B/66B

To analyze detailed behavior of the 64B/66B coding, the capture functionality allows a detailed view on particular coding blocks. The numerical evaluation shows content and timestamp of individual blocks, a graphical evaluation gives a characterization of data, control and errored blocks. Various filters, which can be combined, are provided to control the kind of blocks captured. The captured data can be exported to a CSV format file.

Captured data	Index, Relative time, block type,
	error type, Sync header, 66B
	Block payload bytes
Number of captured block	√s ≤ 4,096
Time stamp resolution	6.4 ns at 10.315 G
Filter types	Block errors, block types
Block error filters	Errored blocks, invalid blocks,
	blocks with invalid block type,
	blocks with invalid sync header
Data block filter	All, none
Control block filter	All, none, Selected
	(16 different control blocks)

MAC/IP Testing

MAC/IP Testing includes the ability to generate/analyze up to 256 independent traffic flows, and apply up to 16 unique traffic profiles to those flows. Flows and traffic parameters can be modified on the fly.

MAC/IP Configuration

J	
Port Settings	
MAC port address	Factory default, user defined
Max Accepted frame size	ze 128 to 65,500 bytes
Start of frame detection	n Byte count mode,
	SFG Detect mode
MAC Speed TX/RX	10.0 G, 10.0 G stretched
Bandwidth Calculation	
MAC bandwidth	Without Preamble, without Min IPG;
Calculation	With Preamble, without Min IPG,
	With Preamble, with Min IPG
Generator	
MAC Frame Generatio	n
Structure types	Standard frame, VPLS (EoMPLS),
	PBB/PBT
Standard frame	
Frame type	IEEE 802.3, Ethernet II, IEEE 802.2
	LLC, SNAP
Frame structure	VLAN/Q-in-Q, MPLS
VPLS (EoMPLS) frame	
Outer frame type	Ethernet II, SNAP
Inner frame type	IEEE 802.3, Ethernet II, IEEE 802.2
	LLC, SNAP
Inner frame structure	VLAN/Q-in-Q
PBB/PBT frame	
Outer frame type	PBB/PBT

Inner frame type	IEEE 802.3, Ethernet II, IEEE 802.2 LLC, SNAP
Inner frame structure	VLAN/Q-in-Q, MPLS
VLAN/Q-in-Q Setting	
Tags	Multiple up to 10
Editable parameters	TPI, priority, CFI/DEI, VID,
Europic parameters	Ethertype
MPLS Settings	
-	lable for Ethernet II and SNAP frames
Labels	Multiple up to 10
Editable parameters	Label, CoS, TTL, Ethertype
·	(unicast/multicast)
MAC address settings	
Source address	User defined, factory default,
	type (port, any, unicast)
Destination address	User defined, type
	(unicast/multicast, broadcast)
VPLS (EoMPLS) Settin	ngs
Inner frame structure	
As per Standard frame	e including up to 6 VLAN Tags
Outer frame structure	
Tunnel label	Label, CoS, TTL
Control word	Reserved Bits, sequence number
	label, CoS, TTL
VC-label	Ethertype, MAC addresses,
Parameters	Frame type
PBB/PBT Settings	
Inner Frame Structure	
As per standard frame in	cluding up to 5 VLAN tags and MPLS labe
Outer Frame Structure	
B-Tag (up to 2 tags)	TPI, VID, priority, DEI
3 1 3 1	[PI, SID, priority, DEI, NCA, Res1, Res2
Parameter	MAC addresses
IPv4/IPv6/UDP/TCP se	ttings
Supported for All Sta	ndard Frame Types
IP types	IPv4, IPv6
IPv4 basic settings	Destination address, default
, in the second s	gateway, subnet mask
IPv4 header	ToS, DSCP, ECN, identification,
	flags, protocol, TTL, IP source
	and destination address
IPv6 header	Traffic class, flow label, next header,
	hop limit, IP source and
	destination address
UDP, TCP header	Source and destination ports
IPv4 Configuration S	•
-	a IPv4 point-to-point connection
,	ty of the flow setup. Two protocols assi
	g the IPv4 destination address; ARP, an
in simplifying resolving	une ip v4 destination address; ARP. an
DHCP including ARP m	ay be enabled.
DHCP including ARP m Retries	ay be enabled. 0 to 100 100 to 60,000 ms

The payload can be o	configured as a Test frame or a BERT pattern
Test frame	Time stamp, sequence number
	with filling pattern

Specifications cont'd.

Test frame filling pattern	Digital byte, PRBS 2 ³¹ —1
BERT pattern	PRBS 2 ³¹ -1, 2 ²³ -1 and inverted,
	all 1s, all 0s, digital word 32 bits

TX Traffic Generator

Transmitter mode	Bandwidth controlled, gap controlled
Send mode	Once, continuous
Continuous	Ongoing traffic as defined
Once	triggers generation of programmed
	number of frames/bursts per flow
	as per traffic profiles,
	all flows are started synchronously

Bandwidth Controlled Traffic

Flow Bandwidth Modes

Absolute	Speed of all fl	ows is cut proportionally,
Absolute	•	andwidth exceeds 100%.
Carlad		
Scaled		ows are transmitted with
		elative proportion as per
		ofile and can be adapted
		om 0 to 100% utilization.
Limited		ed except with an upper
		not exceed traffic profile.
Traffic Profiles fo	r Bandwidth Co	ntrolled Traffic
Profile type	G	onstant load , bursty load
Back-to-back fram	ies (enables	On/off
max. bandwidth b	y forcing	
the traffic to min I	PG)	
Constant Load		
Bandwidth	Adjustable u	tilization in Mbps and %
Utilization accurac	y	0.1%
Frames/bursts per	shot	1 to 16,777,215
Bursty Load		
Sustained, peak M	AC bandwidth	Adjustable utilization
		in Mbps and %
Frames/bursts per	shot	1 to 65,535
Burst size		1 to 16,777,215
Utilization accurac	у	0.1%
Frame Size Settin	gs	
Mode	Fixed, increm	ent/decrement, random
Fixed		64 to 64k bytes
Increment/decrem	nent	Min, max, step
Random		Min, max
Gap Controlle	ed Traffic	
IPG mode	Fixed, increm	ent/decrement, random
Fixed IPG		8 to16,777,215 bytes
Increment/decrem	nent IPG	Min, max, step
IPG step size		1 to 156 bytes
Random IPG		Min, max
Traffic Profiles for	r Gap Controlled	d Traffic
Frame Size Settings	5	
Mode	Fixed, increm	ent/decrement, random
Fixed		64 to 64k bytes
Increment/decrem	nent	Min, max, step
Random		Min, max
PAUSE Flow Contr	rol	
Mode		Generation, emulation
Flow control emul	ation	On/off

Off, once, continuous

Pause generator

Once	1 to 65,535 frames
Continuous quanta	2 to 820,312,500
Continuous time	102.4 to 42.0E9 ns
PAUSE frame settings	Destination address,
	source address, Ethertype,

opcode, PAUSE quanta Service Disruption Measurements per Flow

Graphical and tabular results for all active flows with "threshold exceeded" and "disruption" results. Results of particular flows are selectable.

Disruption results are given for any disruption occurring which is above the disruption time threshold.

Configuration

Threshold time	100 to 100,000 ms
Impairment separation	2 to 65,535 frames
Summary Statistics	
Total flows evaluated, t	otal flows with disruption, total
flows above threshold t	ime, total disruptions, max count of
disruptions	
Port disruption results	
Disruption result type	Longest
Flow disruption results	
Disruption result type	Shortest, longest, Last
Parameters	Duration, size, type, flow
Size	1 to 232 frames
Туре	Lost, duplication, out of order,
	misinsertion, time-out, link alarm
Disruption Counters	

Res

Results	Disruptions, exceeding threshold
Evaluation	Count, rate, seconds

QoS Measurements per Flow

Graphical and tabular results for all active flows with current and historical results. results of particular flows are selectable . QoS alarms LPAC (loss of performance assessment capability), NFTF (no flow test frame) QoS errors Lost, duplicated, misinserted, out of order

Error evaluation (type dependent)	Count, rate, ratio, seconds
IP throughput	IP bandwidth, MAC utilization
	in bps and %
IP evaluation	Current, average
Frame statistics	Frame count, frame rate,
	Analyzed frame count,
	analyzed frame rate
Transfer delay	Min, max, average, variation
Transfer delay resolution	1 ns
QoS error insertion	Lost, duplicated, misinserted,
	out of order

Packet Jitter Analysis per Flow

Packet jitter is usually caused by queuing and routing across or buffering in a switched transport network. The final effect of high packet jitter is the number of rejected packets. All three types of jitter are analyzed simultaneously and per flow. Instantaneous jitter is the difference between packet spacing of the transmitter compared to packet spacing of the receiver. Instantaneous jitter is a measure of jitter dynamics.

frames is used.	of first degree with a time constant of f
	naximum difference of the plus and
	nsfer delay. Absolute jitter is a measu
of the required buffer	· ·
•	
Instantaneous jitter	Current, peak, average, minimum
	in ns, hits in count values
Hit threshold editable	
RFC 3550 jitter	Current, peak, average in ns
Absolute jitter	Current, peak Early, peak Late in ns
Jitter measurement res BERT per Flow	solution 10 ns
Graphical and tabular r	results for all active flows with current
and history results. Res	sults of particular flows are selectable.
Alarms	LPAC, pattern loss, pattern Sync Loss
Errors	Biterrors
Evaluation	Count, rate, ratio, seconds
MAC/IP Error Insertio	on (Any Flows and Selected Flow)
MAC error type	Runt, oversized, FCS, jabber
IP error type	Header error
Oversized frame	1,519 to 65,500 bytes
Triggering	Single, rate, continuous,
55 5	single burst, continuous burst,
si	ngle burst rate, continuous burst rate
Rate	1.0E-9 to 9.9E-3
Burst	M active, N inactive errored frames
buist	M, N = 1 to 16,777,215 frames
Generator Statistics	
Total bandwidth	Current/average in bps and %
Total bytes	Count
Total frames	Count and rate
PAUSE frames	Count, rate, ratio
MAC bandwidth per flo	
MAC ballu width per no	5 1 1
ID handwidth nor flow	Current/average share Current/average in bps
IP bandwidth per flow	
Bytes per flow	Count
Frames per flow	Count, rate, ratio
Analyzer Total Li Error counts	ink Analysis
	Durt mained ECC to be a second
MAC errors	Runt, oversized, FCS, jabber, errored
IP errors	Header error
Evaluation	Count, rate, ratio, seconds
MAC counters	
Bytes	Total
-	T () () () () ()

Total, errored, good, broadcast,

total, single, double, triple, four or more VLAN: total, single, double, triple, four or more

MPLS/VPLS: total, single, double, triple, four or more, total labeled total flow, total non-flow

multicast, PAUSE, PBB/PBT:

Count, rate, %

Last, min, max

Count, rate, ratio

Frames

Evaluation (type dependent)

PAUSE quanta

PAUSE frames

IP counters

RFC 3550 jitter is defined as low pass filtered instantaneous

jitter. A low pass filter of first degree with a time constant of 16

Count, rate, ratio

8

Specifications cont'd.

IPv4 frames

	·····, ····, ····, ···
	Header, fragments
ICMPv4 messages	Total, error
IPv6 frames	Total, extension reader
ICMPv6 messages	Total, error
UDP/TCP frames	Total
Evaluation	Count, rate, %
Bandwidth results	
Total bandwidth and	utilization
MAC bandwidth types	Port, MPLS/VPLS labeled
IP bandwidth types	IPv4/IPv6
Bandwidth results	Current, average bps
Utilization results	Ratio in %
Frame size results	
Results	Min, max, average
Frame size distribution	n Count, rate, ratio
Distribution classes	64, 65 to 127, 128 to 255,
	256 to 511, 512 to 1023,
	1024 to 2,000, >2,000,
	1024 to 1518+VLAN, >1518+VLAN

Total, total valid, optional

Analysis per Flow

MAC/IP Flow Filtering

The flow filter defines the parameters particular flows have to fulfill to pass the filter and to be analyzed in detail. Besides definable values, don't cares are also offered.

Frame structure	VLAN/Q-in-Q, MPLSs
Frame type	Ethernet II, 802.3, 802.2 LLC, SNAP
Ethertype	Editable value
MAC addresses	Editable source and destination
VLANs	Priority, VID, TPI, CFI/DEI
MPLSs	Label, CoS, TTL
IPv4 header	ToS, DSCP, ECN, protocol,
	source and destination address,
	Number of address mask bits
IPv6 header	traffic class, flow label, next header,
	source and destination address,
	number of address
TCP/UDP	Mask bits
	Source and destination port
Payload type	Test frame, BERT pattern, live traffic
Evaluation of the Tr	affic Flows

Filter bandwidth

Total frames	Filtered In, not filtered In
Total frames results	Count, rate in fps, %
Bandwidth	Current and average for filtered
	In, not filtered In
Bandwidth results	Rate in bps, utilization (link),
	share (flows)
Flow Bandwidth	
Randwidth of each single	filtered flows

Bandwidth of each single filtered flows		
Bandwidth types		MAC, IP, payload
Bandwidth measurements		Current, average
Bandwidth results	Rate in bps, utiliz	zation %, share %
Flow Frame Counts		
Types		Bytes, frames

SyncE G.8264 ESMC Testing

Evaluation

Synchronous Ethernet (SyncE) equipment requires clockquality reporting capabilities, and as specified in recommendation ITU-T G.8264 the Ethernet synchronization messaging channel (ESMC) provides these reporting capabilities by means of the synchronization status message (SSM) protocol. SSM Generator

All static settings of the transmitted SSM frames are displayed. The source address used for the SSM frame is equal to the MAC port address.

SSM insertion		On/off
Send mode		Single frame, continuous
Message rate		0.1 to 20.0 fps
QL mode		Static, alternating
QL code		0 to 15
QL duration		1.0 to 3,600.0 s
SSM asynchronous ev	vent	On/off
SSM Analyzer		
SSM timeout thresho	ld	1 to 60 s
Sliding window size		1 to 10 s
SSM status display	SSM time	out, SSM rate, last QL code
SSM statistics	Av	erage/peak rate, min/max
		inter-frame gap

SSM Delay Measurement

```
Switching delays of synchronous Ethernet equipment can
be measured by triggering a change of the reported clock
quality of an incoming link and simultaneously monitoring
the change of reported clock quality of an outgoing link.
Through a flexible trigger mechanism, a delay measurement is
started when a user-defined TX trigger match is detected and
stopped when the corresponding RX trigger match is detected.
Delay measurement
                                                  On/off
TX/RX trigger conditions
                               Any QL change, Rising QL,
                                  falling QL, change to QL
```

Delay measurement

Time axis scale

Results Display of SSM Events Event List

Display of all results with time stamps

isplay of an results with time stamps	
Criteria	Start, end, duration, count
Viewing filters	Events, durations, count
Graphical View	
Display of all events as bar grap	ohs versus time. Cursors allow
easy identification and zooming	g (in and out) on results.
Viewing filters	Events
Time axis scale	Second, minute, hour

in ms

RFC 2544 Conformance Testing

Automated and advanced RFC 2544 conformance testing is provided. Throughput, frame loss, latency and back to back tests can be setup as per RFC and also fully customized to user needs. Packet jitter testing can also be added to the RFC 2544 standard tests.

RFC 2544 Configuration

Test type	Configurable parameters:
Throughput	Trial duration, initial bandwidth,
	search mode, repetition, accuracy
Frame loss rate	Trial duration, max bandwidth, step size

Latency	Trial duration, repetition, bandwidth
Back to Back	Max duration, repetition,
	search mode, accuracy
Packet jitter	Trial duration, repetition,
	bandwidth, jitter mode
Frame settings	
Numbers of frame size	es 1 up to 10
Frame size	64 to 10,000 bytes
Frame structure	Selectable from defined flows
RFC 2544 Results	
Results are updated as	s the test runs
Measurement status	MAC frame size, remaining time
Results display	Table, graph, bar graph
Test report	Exportable

Capture MAC/IP

This software option enables capturing Ethernet traffic with/ without IP payloads. Frames are captured with selectable buffer size, optionally truncated and with or without preamble data. A powerful user configurable General Purpose filter can be used to capture select data of interest. Captured data is displayed as both a decoded frame and in raw Hex. The result can be saved in a *.cap format compatible with the open source Wireshark packet analysis tool.

Capture Configuration

Buffer size	1, 4, 16, 64, 256 Mbyte
Truncate frames	64 to 65,535 bytes
Capture with preamble	On/off
Capture mode	Direct or filter
Direct mode	All Rx captured
Filter mode flow based	Enabled flows or disabled and
	Unknown flows captured
Filter mode general purpose	Flows with user-editable
	parameters are captured
General purpose filter	frame type, destination and
editable parameters	source address, VLAN Tags,
	B-tags, I-tags, Ethertype, SAP,
	MPLS labels, IP frame type,
	IPv4 error, IP destination and
	source address, IP protocol,
Ţ	CP/UDP destination and source
	address, MAC frame error, MAC
	frame Size, user-pattern filter
	Decoded frame, raw bytes
Capture Display	

Decoded Frame, Raw Bytes

GigELANTesting

Viewing format

ng
n
On/off
Automatic/manual
Flow control,
remote fault encoding
None, asymmetric, symmetric, both no error, offline, link failure, auto-negotiation error

Specifications cont'd.

Minimum inter-packet gap control	6 to 24 bytes
Minimum inter-packet gap threshold	5 to 255 bytes
Testing modes	Terminate, through

Terminate Mode

Generators and analyzers run at the same PCS rate. **Through Mode**

Non-intrusive through mode is offered. The generator and analyzer run at the same PCS rate and the received traffic is terminated at the PHYS layer and retransmitted with the transmitter. In non-intrusive through mode all PCS layer information is unchanged. The client signal is unchanged, retransmitted, and analyzed by the higher layer if support is available.

PCS Generator

Alarm Insertion Type Loss of synch Trigger Continuous Error Insertion Туре Invalid code group, running Disparity, bit error **PCS Analyzer Auto-Negotiation Status** Single error, rate, single burst Trigger (invalid code group only) 1.0E-9 to 0.1E0 Rate Burst size 1 to 255 Status Auto-negotiation in progress, Auto-negotiation Fail State machine status Current state Auto-Negotiation Link Partner Capabilities Flow control None, asymmetric, symmetric, Both Remote fault encoding No error, offline, link failure, Auto-negotiation error Mode Full duplex, half duplex Next-page capability Yes/no Alarm Detection Loss of synch, link down, IPG violation Туре Error Detection Invalid code group, running disparity, Туре error propagation /V/, IPG violation events Evaluation (depends on type) Count, rate, ratio, seconds **Result Display of Alarms and Errors** Numerical Display Duration in seconds is displayed for each alarm. Count, rate, ratio and duration in seconds are displayed depending on error type. Event List Display of all results with time stamps. Criteria Start, stop, duration, count Viewing filters Events, durations, count Graphical View Display of all events as bar graphs versus time. Cursors allow easy identification and zooming (in and out) on results. Viewing filters Events Time axis scale Second, minute, hour

MAC/IP Testing

Feature is identical to MAC/IP Testing specified under 10GE LAN Testing

10 G WAN Testing

WIS Testing

WIS testing is similar to SDH/SONET testing,		
except for two differences:		
Pattern	Mixed frequency pattern or client	
signal from higher-layer application		
Framed signal stru	ture STS-192-c-SPE, VC-4-64c	

10 G Fibre Channel Testing

Constant Configuration	
	Through, wrapper/de-wrapper
Testing modes	Terminate, non-intrusive

Generator Config	guration
Frame type	FC-2 frame
Frame header settings	Destination ID, source ID,
SE	equence ID, Originator exchange ID,
	Responder exchange ID
Traffic Generatio	on
Transmitter mode	Bandwidth controlled
Send mode	Once, continuous
Continuous	Ongoing traffic as defined
Once	User defined number of frames,
	count of bursts
Traffic Profiles	
Profile type	Constant load , bursty load
Back-to-Back frames	On/off
Constant Load	
Bandwidth Ac	ljustable utilization in Mbps and %
Frames/bursts per shot	1 to 65,535

Bursty Load

Sustained, peak FC-2 bandwidth	Adjustable utilization in
	Mbps and %
Frames/bursts per shot	1 to 65,535
Burst size	2 to 268,435,455

Frame Size Settings Fixed 76 to 2,140 bytes

Payload Settir	ngs
Payload type	Test frame, BERT pattern
BERT pattern	PRBS 2 ²³ -1, 2 ³¹ -1, 2 ²³ -1 inv.,
	2 ³¹ -1 inv.,
	All Os, All 1s, digital word 32 Bit

Flow control

Transmit R_RDY	Enable/disable
Received R_RDY	Count
Login	
Enable login	On/off
Туре	Implicit

Tx buffer credits	1 up to 4096
Current credits	Count

Login Alarm

Туре	Zero credits
Result	Count, status

Error Insertion	1
Туре	CRC error
Trigger	Single error, single burst
Burst size	1 up to 32767 frames
Туре	BERT Bit error
Trigger	Single error, rate
Rate	$10^{-3}, 10^{-4}, 10^{-5}, 10^{-6}, 10^{-7}, 10^{-8}, 10^{-9}$

Transmitter Statistics

Total bytes	Count
Total frames	Count, current rate
Total bandwidth	Current, average
Total utilization	Current, average
Total payload bandwidth	Current
Transmitted R_RDY	Count

Analyzer Configuration

Frame type	FC-2 frame
Filter	On/off
Filter criteria	Destination ID, source ID,
	sequence count, routing control,
	data structure type

Traffic Evaluation

QoS Evaluation	
QoS alarms	LPAC,NFTF
Alarm evaluation	Seconds
QoS errors	Lost, out of order
Error evaluation	Count, current rate, ratio, seconds
FC-2 throughput	Bandwidth, utilization
Throughput evaluation	Current, average
Transfer delay	Min, max, average
Tested frame count	Count of frames
BERT Evaluation	
BERT alarms	LPAC, pattern loss
Alarm evaluation	Seconds
BERT errors	Bit error
Error evaluation	Count, current rate, ratio, seconds
FC-2 Error Evalua	tion
Туре	Runt, jabber, CRC error,
	undersized, oversized, errored
Results	Count, current rate, ratio, seconds
Statistics All Traff	ic
Total bytes	Count
Total frames	Count, current rate
Total errored frames	Count, current rate
Total good frames	Count, current rate
Total CL1 frames	Count, current rate, ratio
Total CL2 frames	Count, current rate, ratio
Total CL3 frames	Count, current rate, ratio
Total CLF frames	Count, current rate, ratio

Specifications cont'd.

Total bandwidth	Current, average
Total utilization	Current, average
Total payload bandwidth	Current
Port Service disruption	Maximum
Frame Size Statistics	
Available for All frames and filte	red frames
Frame size distribution Classes	28-64, 68-124, 128-252,
	256-508, 512-1020,
	1024-2140, >2140
Evaluation	Count, current rate, ratio
Results Nu	merical and Graphical View
Frame size	Min, average, Max.
Statistics Filtered Traffi	c
Filtered In	
Total bytes	Count
Total frames	Count, current rate, ratio
Bandwidth	Current, average
Utilizations	Current, average
Share	Current, average
Payload bandwidth	Current, average
Not Filtered In	
Total frames	Count, current rate, ratio
Bandwidth	Current, average
Utilizations	
othizations	Current, average

SDH/SONET Testing

Generator

Mapping

SDH	VC-4-64c, VC-4-16c, VC-4-4c, VC-4, AU-3/VC-3
SONET	STS-192c SPE, STS-48c SPE,
	STS-12c SPE, STS-3c SPE, STS-1 SPE

Signal Structure Configuration

Free definable Foreground Channel

Optionally definable Background Channel Background Channel with selectable mapping (dependent on Foreground Channel) with definable HO Path Overhead, payload pattern, J1 trace and SS bits.

Payload	Test pattern or higher layer
	application test pattern
Test pattern	PRBS 2 ³¹ -1, 2 ²³ -1, 2 ¹⁵ -1, 2 ¹¹ -1,
	2 ³¹ -1 inv., 2 ²³ -1 inv.,
	2 ¹⁵ –1 inv., 2 ¹¹ –1 inv.
	(conforming to ITU-T 0.150),
	Digital Word 32 bits

Alarm Insertion

Туре

.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
SDH	LOF, MS-AIS, MS-RDI, AU-AIS, AU-LOP,
	HP-UNEQ, HP-PLM, HP RDI, RS-TIM,
	HP-TIM, HP-RDI-C, HP-RDI-S, HP-RDI-P
SONET	LOF, AIS-L, RDI-L, AIS-P, LOP-P, UNEQ-P,
	PLM-P, RDI-P, PDI-P, TIM-S, TIM-P,
	RDI-P-C, RDI-P-S, RDI-P-P
Trigger	Continuous, single burst, continuous burst
Burst	M frames active and N frames inactive
	N, M = 1 to 8,000,000 or 125 μs to 1,000 s

Error Insertion

Type SDH	Rando	om, FAS, B1, B2	2, B3, MS-REI	, HP-REI,
		, , , , , ,		Bit error
SONET	Ra	andom, FAS, B	1, B2, B3, REI-	-L, REI-P,
				Bit error
Mode	Single error	, rate, single b	urst, continuc	ous burst
Burst	М	frames active	and N frames	inactive
	N, M =	= 1 to 8,000,00	0 or 125 µs to	o 1,000 s
Error	Min. rate	Max. rate	Stepping	Mapping
Random	1×10 ⁻¹⁰	1 × 10 ⁻³	Exponential	
FAS	1 × 10 ⁻¹²	1 × 10 ⁻³	0.1	
B1	1×10^{-12}	6.4 × 10 ⁻⁶	0.1	
B2	1×10 ⁻¹²	1 × 10 ⁻³	0.1	
MS-REI, REI-L	1 × 10 ⁻¹²	1 × 10 ⁻³	0.1	
B3	1 × 10 ⁻¹²	6.6×10 ⁻⁶	0.1	VC-4-64c STS-192c
B3	1×10 ⁻¹²	1 × 10 ⁻³	0.1	VC-3 STS-1
HP-REI,	1×10 ⁻¹²	6.6×10 ⁻⁶	0.1	VC-4-64c
REI-P				STS-192c
HP-REI,	1×10^{-12}	1×10^{-3}	0.1	VC-3 STS-1
REI-P				
Bit error	1×10^{-12}	1×10^{-3}	Exponential	
Intrusiv	Intrusive Through Mode			
Through mode manipulation and error/alarm insertion is				
		ntrusive throug	,	
All individual SOH/TOH bytes except B1, B2, B3, H1, H2, H3				
can be replaced by a fixed value or passed through.				
J0 byte can be replaced by a fixed byte value or 16/64 bytes				

J0 sequence B1, B2 parity bytes are regenerated at all times. B3 parity bytes are passed through but additional error

insertion is possible. H1, H2, H3 pointer bytes are passed through at all times.

Supported alarm insertion SDH: LOF, RS-TIM, MS-AIAS, MS-RDI SONET: LOF, TIM-S, AIS-L, RDI-L Supported error insertion SDH: random, FAS, B1, B2, B3, MS-REI, HP-REI

All 0s, All 1s, digital word 32 Bit SONET: random, FAS, B1, B2, B3, REI-L, REI-P

Overhead Generator

Visual display of overhead bytes.

Statically Programmable Bytes

A1-A2 unscrambled RSOH/SOH all bytes except B1

MSOH/LOH all bytes except B2, H1H3	
POH all bytes except B3	
Trace Identifier	
10 11	

JU, J I	Osel dellighte
Mode	1 byte, 16 bytes, 64 byte,
	auto 16-byte, auto 64-byte
K1,K2	User definable with clear text decode
Architecture	Ring, linear

llear dafinable

Time axis scale

Pointer Insertion

Generation of pointer actions at the AU/STS level with definable SS Bits

Pointer action type	New pointer value, offset
	Simulation, pointer increments/
	decrements, pointer sequence
New pointer value	New value, with/without NDF
Offset simulation	-320 ppm to +320 ppm
Pointer increments/decrem	nents Single, periodical,
	alternating
Pointer action period (T1)	2 to 4,800,000 frames,
	or 250 us to 600s
Pointer sequence	Sequence type, direction,
	pointer action period,
	basic period, add/cancel period
Sequence type	87/3, 87/3 Cancel, 87/3 Add
Direction	Increment, decrement
Basic period (T2)	T1 x 90
Add/cancel period (T3)	T2 x (2 to 65,535)

Analyzer

Auto Signal Structure

The receiver automatically analyzes the incoming signal structure (mapping, payload, traces) for easy configuration of the test channel. Live Traffic mode ignores pattern loss and bit error that allows analysis of live traffic without trouble indication. Alarm Detection SDH OOF, LOF, MS-AIS, MS-RDI, RS-TIM, AU-AIS, AU-LOP, HP-TIM, HP-UNEQ, HP-PLM, HP-RDI, HP-RDI-C, HP-RDI-S, HP-RDI-P, pattern loss SONET LOF, SEF, TIM-S, AIS-L, RDI-L, AIS-P, LOP-P. UNEO-P. TIM-P. PLM-P. PDI-P. RDI-P-C, RDI-P-S, RDI-P-P, pattern loss Resolution 100 ms **Error Detection** FAS, B1, B2, B3, MS-REI, HP-REI, SDH bit errors (if SDH/SONET test pattern) SONET FAS, B1, B2, REI-L, B3, REI-P, Bit errors Intermediate bit error (if SDH/SONET test pattern) In addition to the long-term bit error measurement, intermediate results are available. Interval duration 1 to 3600 s Results Current and previous Interval, count, and ratio **Result Display of Alarms and Errors** Numerical Display Duration in seconds is displayed for each alarm. Count, ratio, and duration in seconds are displayed for each error Event List Display of all results with time stamps. Criteria Start, stop, duration, count Viewing filters Events, durations, count Graphical View Display of all events as bar graphs versus time. Cursors allow easy identification and zooming (in and out) on results. Viewing filters Events

Second, minute, hour

Specifications cont'd.

Performance Monitoring

SONET Evaluation of GR-253, T1.231

Results EFS, ES, SES, UAS-L, UAS, AUS, ESA Evaluation duration and percentage

SDH Evaluation of ITU-T G.826, G.828, G.829		
Results	EFS, ES, SES, UAS, BBE, EB	
Evaluation duration, p	percentage, pass/fail verdict	
Configuration	HRP Allocation, SES thresholds,	
	UAS Limit, UAS, UAS mode	
HRP allocation	0.10000 to 100.00000%	
SES thresholds	1 to 8,000 blocks;	
	1 to 64,000 (G.829 Reg. Section);	
	1 to 49,152,000 (G.829 Mux. section)	
UAS limit on/off, 0 to	100,000 secs	
UAS mode individual, global		

Service Disruption Test

To analyze service disruption times, a high-speed event list as a result of all detected events is generated.

Result Display of Disruptions Numerical Display

Total number of disruptions, begins with timestamp of first disruption, and ends with a timestamp of last disruption. *Statistics*

Shortest disruption time (with timestamp) in msec

Longest disruption time (with timestamp) in msec Average disruption time in msec

Event List

Display of all results with time stamps, and duration		
Logging modes	No logging, disruption events only,	
	distribution and sensor events	
Viewing filters	Events, durations	
Sensor to Trigger Service Disruption test,		
Selectable		
SDH		
Errors	FAS, B1, B2, MS-REI, B3, HP-REI,	
	bit error/pattern loss	

	Dit enoi/pattern 1035
Alarms	LOS, LOF, OOF, MS-AIS, MS-RDI,
	AU-AIS, AU-LOP , HP-UNEQ,
	HP-PLM, HP-RDI
SONET	
Errors	FAS, B1, B2, REI-L, B3, REI-P,
	bit error/pattern loss
Alarms	LOS, LOF, SEF, AIS-L, RDI-L, AIS-P, L
	OP-P, UNEQ-P, PLM-P, PDI-P, RDI-P
Event sample resolution	100 µs
Separation time	0.1 to 100.000 ms

Disruption Measurement Configuration

 Separation time
 0.1 to 100,000.0 ms

 Threshold time
 0.0 to 100,000.0 ms

 Separation time starts at the end of the last event and is used to determine if the following event is a continuation of the same disruption (event occurs within separation time) or the start of the next one (event occurs after separation time has elapsed).

 Overhead Analyzer

Display of overhead on the GUI.

Message Evaluation (TIM/PLM)

Byte Capture SOH/TOH	
	as criterion for PLM
PLM evaluation	Expectation value editable
C2 signal label clear text selecti	on
	as criterion for TIM
TIM evaluation	Expectation value editable
J0, J1 clear text display	
J0, J1 1 byte, 16 bytes with CRC	or 64 byte sequence

Analyzing SOH/TOH functions requires capturing individual bytes vs. time, allowing detection of errors or short-term changes with frame level resolution. The capture function is started by a selectable trigger. Values for one/two selected bytes can be stored and accessed subsequently in a table of values. Particularly in capturing the APS sequences, bytes K1 and K2 are displayed in clear text. Selectable bytes for SOH/TOH All bytes Byte value, number of frames Captured parameters and correspondent time Storage Depth of One Byte or K1/K2 Combination Post trigger Up to 256 value changes Pre trigger Up to 256 value changes Trigger conditions Pre, post, center Trigger events User defined byte value, bit mask (compare, not compare, don't care)

Pointer Analysis

AU/STS pointer Numerical display Value Increments, decrements, and NDF

Tabular Display All events with time stamps

in crents man and stamps	
Criteria	Start, stop, duration, count

Transfer Delay Analysis

Measure by special payload pattern ranging from 0 to 40 s	
Measure between ports within the same mainframe	
Numerical display	
Current transfer delay	Accuracy of 1 µs and
	resolution 100 ns
Minimum and maximum transfer delay (with timestamp)	

SDH/SONET VCAT Testing

The MAC/IP capture option is not available in combination with 10 ${\rm G}$ VCAT.

VCAT Testing

Virtual Concatenation (VCAT)

Virtual concatenation implementation is in accordance with ITU-T G.707, G.783, and ANSI T1.105. One virtual concatenation group (VCG) is supported. Mode Terminate, through mode at PHYS layer

Signal structures/mappings SDH STM-64-Vc4-nv (n = 1...64),

STM-64-AU3/Vc3-xv (x = 1...192), STM-16-Vc4 (n = 1...16), STM-16-AU3/Vc3-xv (x = 1...48), STM-4-AU3/Vc3-xv (x = 1...12)

SONET	0C192-STS-1xv (x = 1192),
	0C48-STS-1xv (x = 148),
	0C12-STS-1xv (x = 112)
Generator	
Mapping	
SDH	VC-4-Nv (N= 1, 64),
5011	AU3/VC-3-Nv (N= 1,192)
SONET	STS-1-Nv (N= 1, 192)
All members can b SONET signal.	be distributed in all channels of the SDH/
Group size is selec	table from 1 to the maximum.
All path layer para	meters including SQ number, overhead,
errors, and alarms	are supported for every member of the
VCG individually.	
Background (
SDH	AU4 unequipped, AU3 unequipped
SONET	STS-1 unequipped
•	mber Generation
User programmab	le, per member
Payload	
51.7	yloads can be transported with VCAT:
Test pattern	PRBS pattern, higher layer
PRBS pattern	PRBS 2 ³¹ -1, 2 ³¹ -1 inv.
Error insertion	Dandam FAS P1 P2 MS DEL/DELL
Туре	Random, FAS, B1, B2, MS-REI/REI-L, B3, HP-REI/REI-P
Triggor	,
Trigger Path Insertion	Single error, rate Single or multiple members
Error	Rate
Random	1×10^{-3} to 1×10^{-12}
FAS	1×10^{-3} to 1×10^{-10}
B1	$6.4 imes10^{-6}$ to $1 imes10^{-10}$
B2	1×10^{-3} to 1×10^{-10}
MS-REI/REI-L	$1 imes 10^{-3}$ to $1 imes 10^{-10}$
B3	$1 imes 10^{-3}/4.2 imes 10^{-4}$ to $1 imes 10^{-10}$
HP-REI/REI-P	$1 imes 10^{-3}/4.2 imes 10^{-4}$ to $1 imes 10^{-10}$
Step size for mant	issa 0.1
The maximum val	ue ensures that all parity bits in all frames
are affected.	
Alarm Inserti	on
Туре	LOS, LOF, MS-AIS/AIS-L, MS-RDI/RDI-L,
	AU-AIS/AIS-P, MS-TIM/TIM-S,
	HP-RDI/RDI-P, HP-RDI-C/RDI-P-C,
	AU-AIS/AIS-P, HP-RDI-S/RDI-P-S,
	HP-RDI-P/RDI-P-P, AU-LOP/LOP-P, HP-UNEQ/UNEQ-P, 00M2, 00M1
Dath incartions	
Path insertions	Single or multiple members ontinuous, single burst, continuous burst
Trigger Co Burst	Triggering not available for TIM
SOH/TOH and	
All accessible TOH	
	embers independent
Traces JO, J1 in cle	
J1 of all members	
	······································

Sync status (S1) in clear text

Analyzer

Error Detection

Specifications cont'd.

Туре	Random, FAS, B1, B2, REI-	
Alarm Detecti	,	-P/HP-REI
Type	LOS, LOF, OOF/SEF, MS-/	
туре	MS-RDI/RDI-L, MS-TI	,
	AU-AIS/AIS-P, HP-F	,
	HP-RDI-C/RDI-P-C, HP-RDI-S	
	HP-RDI-P/RDI-P-P, HP-T	,
	AU-LOP/LOP-P, HP-UN	EQ/UNEQ-
	P loss of alignme	ent (LOA),
	Loss of multi fran	ne (LOM),
	Out of multi frame	. ,,
	Out of multi frame	. ,
	nalyzed simultaneously for all	members
and displayed in a		
Event list	Event type, channel, s	
D 1 /:		, duration
Resolution	100 ms for alarm, 1 s	for errors
•	mber Evaluation	
	e numbers are user programma	
	ed (ExSQ) and accepted (AcSQ)	SQ numbers
	ismatch alarm is generated.	
		COM
·	mismatch defect	SQM
SOH/TOH and	I POH Analysis	SQM
SOH/TOH and All accessible TOH/	I POH Analysis SOH bytes	SQM
SOH/TOH and All accessible TOH/ POH bytes of all m	I POH Analysis SOH bytes embers independent	SQM
SOH/TOH and All accessible TOH/ POH bytes of all m Traces J0, J1 in clea	I POH Analysis SOH bytes embers independent ar text	SQM
SOH/TOH and All accessible TOH/ POH bytes of all m Traces J0, J1 in clea J1 of all members	I POH Analysis SOH bytes embers independent ar text independently	SQM
SOH/TOH and All accessible TOH/ POH bytes of all m Traces J0, J1 in clea J1 of all members Sync status (S1) in	I POH Analysis SOH bytes embers independent ar text independently clear text	
SOH/TOH and All accessible TOH/ POH bytes of all m Traces J0, J1 in clea J1 of all members Sync status (S1) in	I POH Analysis SOH bytes embers independent ar text independently	
SOH/TOH and All accessible TOH/ POH bytes of all m Traces J0, J1 in clea J1 of all members i Sync status (S1) in The signal label C2 in clear text.	I POH Analysis SOH bytes embers independent ar text independently clear text of all members are shown ind	
SOH/TOH and All accessible TOH/ POH bytes of all m Traces J0, J1 in clea J1 of all members i Sync status (S1) in The signal label C2 in clear text. Background C	I POH Analysis SOH bytes embers independent ar text independently clear text of all members are shown ind Channels	
SOH/TOH and All accessible TOH/ POH bytes of all m Traces J0, J1 in clea J1 of all members i Sync status (S1) in The signal label C2 in clear text. Background C Background chann	I POH Analysis SOH bytes embers independent ar text independently clear text of all members are shown ind Channels els are unequipped.	
SOH/TOH and All accessible TOH/ POH bytes of all m Traces J0, J1 in clea J1 of all members i Sync status (S1) in The signal label C2 in clear text. Background C Background chann Pointer Analy	I POH Analysis SOH bytes embers independent ar text independently clear text of all members are shown ind Channels els are unequipped. 'sis	
SOH/TOH and All accessible TOH/ POH bytes of all m Traces J0, J1 in clea J1 of all members i Sync status (S1) in The signal label C2 in clear text. Background C Background chann Pointer Analy STS/AU pointer val	I POH Analysis SOH bytes embers independent ar text independently clear text of all members are shown ind Channels els are unequipped. rsis ues of all members	
SOH/TOH and All accessible TOH/ POH bytes of all m Traces J0, J1 in clea J1 of all members i Sync status (S1) in The signal label C2 in clear text. Background C Background chann Pointer Analy STS/AU pointer val Counts of increment	I POH Analysis SOH bytes embers independent ar text independently clear text of all members are shown ind Channels els are unequipped. rsis ues of all members nt, decrement and NDFs	
SOH/TOH and All accessible TOH/ POH bytes of all m Traces J0, J1 in clea J1 of all members i Sync status (S1) in The signal label C2 in clear text. Background C Background chann Pointer Analy STS/AU pointer val Counts of incremen Differential D	I POH Analysis SOH bytes embers independent ar text independently clear text of all members are shown ind Channels els are unequipped. rsis ues of all members nt, decrement and NDFs elay Analysis	ependently
SOH/TOH and All accessible TOH/ POH bytes of all m Traces J0, J1 in clea J1 of all members i Sync status (S1) in The signal label C2 in clear text. Background C Background chann Pointer Analy STS/AU pointer val Counts of incremen Differential D Parallel measurem	I POH Analysis SOH bytes embers independent ar text independently clear text of all members are shown ind Channels els are unequipped. rsis ues of all members nt, decrement and NDFs elay Analysis ent of differential delay provid	ependently ed for each
SOH/TOH and All accessible TOH/ POH bytes of all m Traces J0, J1 in clea J1 of all members i Sync status (S1) in The signal label C2 in clear text. Background C Background chann Pointer Analy STS/AU pointer val Counts of incremen Differential D Parallel measurem group member. Ca	I POH Analysis SOH bytes embers independent ar text independently clear text of all members are shown ind Channels els are unequipped. rsis ues of all members nt, decrement and NDFs elay Analysis	ependently ed for each
SOH/TOH and All accessible TOH/ POH bytes of all m Traces J0, J1 in clea J1 of all members i Sync status (S1) in The signal label C2 in clear text. Background C Background chann Pointer Analy STS/AU pointer val Counts of incremen Differential D Parallel measurem group member. Ca entire group.	I POH Analysis SOH bytes embers independent ar text independently clear text of all members are shown ind Channels els are unequipped. rsis ues of all members nt, decrement and NDFs elay Analysis ent of differential delay provid	ependently ed for each rovided for
SOH/TOH and All accessible TOH/ POH bytes of all m Traces J0, J1 in clea J1 of all members i Sync status (S1) in The signal label C2 in clear text. Background C Background chann Pointer Analy STS/AU pointer val Counts of incremen Differential D Parallel measurem group member. Ca entire group.	I POH Analysis SOH bytes embers independent ar text independently clear text of all members are shown ind Channels els are unequipped. rsis ues of all members nt, decrement and NDFs elay Analysis ent of differential delay provid lculation of differential delay p	ependently ed for each rovided for
SOH/TOH and All accessible TOH/ POH bytes of all m Traces J0, J1 in clea J1 of all members i Sync status (S1) in The signal label C2 in clear text. Background tak Background chann Pointer Analy STS/AU pointer val Counts of incremen Differential D Parallel measurem group member. Ca entire group. Results provided for	I POH Analysis SOH bytes embers independent ar text independently clear text of all members are shown ind Channels els are unequipped. rsis ues of all members nt, decrement and NDFs elay Analysis ent of differential delay provid lculation of differential delay p or all members and groups, diff	ependently ed for each rovided for

10G High Order MultiChannel

MultiChannel Testing

The SDH/SONET MultiChannel option adds parallel generation and analysis of mixed mapping signal structures up to 64 x VC-4/192 x STS 1. The MultiChannel signal can be mapped into OTN.

Generator

The MultiChannel option fills up a STM-N/OC-N signal completely with mixed or homogeneous mappings. Granularity for mixing of mapping structures is AU-3/STS-1 level.

SDH mappings for AU3/VC-3, VC-4, mixed payloads VC-4-2c/3c/4c/8c/16c/64c, AU-3/AU-4 unequipped SONET mappings STS-1/3c/6c/9c/12c/24c/48c/192c, for mixed payloads STS-1 unequipped PRBS 2³¹-1, 2²³-1, 2¹⁵-1, 2¹¹-1,2³¹-1 inv., 2²³-1 inv., 2¹⁵-1 inv.,

2¹¹-1 inv., user-defined 32-bit word Patterns may be set individually per each test channel and

is applicable for path labels and traces.

Alarm Insertion

Pattern

SDH	LOS, LOF, TIM-S, MS-AIS, MS-RDI,
	AU-LOP, AU-AIS, HP-UNEQ, HP-PLM,
	P-RDI, P-PLM, HP-RDI, HP-RDI-C,
	HP-RDI-S, HP-RDI-P
SONET	LOS, LOF, TIM-S, AIS-L, RDI-L,
	LOP-P, AIS-P, UNEQ-P, PLM-P,
	RDI-P, RDI-P-C, RDI-P-P, RDI-P-S
Trigger Cont	tinuous, single burst, continuous burst
Continuous burst	M frames with alarm on,
	N frames with alarm off
M, N	1 to 80,000,000 or 125 μs to 1,000 s
Error Insertion	
Туре	Random, FAS, B1, B2, MS-REI/REI-L,
	B3, HP-REI/REI-P, bit error
Trigger	Single, rate, single burst,
CO	ntinuous burst, single burst with rate,
	continuous burst with rate
Rate	
FAS, B2, MS-REI/REI-	L, bit error 1×10^{-3} to 1×10^{-12}
Random error	$1 imes10^{-3}$ to $1 imes10^{-10}$
B1	$6.4 \times 10^{-6*}$) to 1×10^{-12}

B3, HP-REI/REI-P $1 \times 10^{-3} (1 \times 10^{-6})^*)$ to 1×10^{-12} *) depends on bit rate and mapping Continuous burst M frames with alarm on, N frames with alarm off M, N 1 to 80,000,000 or 125 µs to 1,000 s The maximum value ensures that all parity bits in all frames

are affected.

Burst with Rate

Defined error rate with additional burst time window. All errors except random and bit error. Errors are inserted into all or selected channels.

SOH/TOH and POH Overhead

Access to all SOH/TOH/POH bytes except Bx and Hx. New values can be set to all bytes in parallel. 1/1/1/

KI/KZ	with interpretation acc. to
	ANSI T1.105.01 for ring or linear protection
S1	Setting with text interpretation
C2, J1	Can be set individually per each test channel
J0, J1	1/16/64 byte, auto 16/64 byte
Auto mod	les for J0, J1 set unique values to all channels
containin	g a channel identification.

Analyzer

Complete analysis of all channels set within an STM 64 or OC-192 signal.

Auto Signal Structure Detection

Receiver automatically detects the signal structure (mappings, payload, traces) for easy configuration of the test set.

Error/Alarm Detection

Same types as insertion. error count, error ratio, and errored seconds per channel. Summary results provide overview of all channels on one page. Counts results for all channels simultaneously.

Error/Alarm Logging with Time Stamps

The ONT stores errors/alarms in all channels with time stamps, enabling identification of events occuring in any of the channels.

Errors	Count with 1 s resolution
Alarms	Start/stop/duration with 0.1 s resolution

Error and Alarm Event List

Includes filter capabilities

Storage capacity	300,000 events per measurement
------------------	--------------------------------

The event list contains the following:

• Event type

- Channel ID
- Start/end time
- Duration
- Frror count

Message evaluation/ overhead access

SOH/TOH and POH Overhead Display of all SOH/TOH/POH bytes.

View accessible for each channel J0, J1, C2 PLM evaluation per channel, expected value editable. TIM evaluation per channel, determines expected value from received signal.

Byte Capture SOH/TOH

To analyze the SOH/TOH functions, it is necessary to capture individual bytes vs. time, allowing detection of errors or short-term changes with frame level resolution. Start the capture function using a selectable trigger. Store values for one/two selected bytes for subsequent access in a table of values. Particularly in capturing the APS sequences, bytes K1 and K2 are displayed in clear text. Selectable bytes for SOH/TOH All bytes Byte value, number of frames Captured parameters and correspondent time Storage Depth of One Byte or K1/K2 Combination

Post trigger	Up to 256 value changes
Pre trigger	Up to 256 value changes
Trigger conditions	Pre, post, center
Trigger events	User-defined byte value, bit mask
	(compare, not compare, don't care)

Connectivity Check

The connectivity feature verifies that all channels are routed through a switching matrix as expected, for example after reloading the matrix. The path trace information is used to perform the connectivity.

Unique values are set for all J1 path traces in parallel for path identification.

Specifications cont'd.

The Trace Learning mode stores the path trace values provided by the device under test to be used as reference to check connectivity.

Mismatches are indicated graphically in the signal structure overview

Pointer Evaluation

Pointer actions are counted for all channels in parallel: increment, decrement, NDF

Display Modes

Summary for all channels

Per channel view

Paths table with sorting criteria

Service Disruption Test

The MultiChannel extension module measures service disruption time on all test channels simultaneously up to 192 × STS-1, 192 × AU3/VC-3, or 64 x VC-4.

Each disruption on every channel is stored with time stamp and duration.

A setup page allows enabling/disabling of each channel individually.

Result Presentation

Summary results for all channels

Channel table	Contains shortest/longest/average/# of
	disruptions for each channel and
	the total duration with easy table sorting
Disruption list	Contains each disruption with
	start time and duration for all channels
Resolution	1 ms
Storage capacity	100000 events per measurement

Separation time setting 100 000 ms Separation time starts with the end on an event and determines if the following event is a continuation of the same disruption (event occurs within separation time) or the start

of the next disruption (event occurs after separation time has elapsed). The criteria to trigger the service disruption test is selectable

(any combination of criteria allowed):

SDH

Errors	B1, B2, MS-REI, B3, HP-REI, payload error
Alarms	LOF, OOF, MS-AIS, MS-RDI, AU-AIS,
	AU-LOP, HP-UNEQ, HP-PLM, HP-RDI
SONET	
Errors	B1, B2, REI-L, B3, RDI-P, REI-P, bit errors
Alarms	LOF, SEF, AIS-L, RDI-L, AIS-P, LOP-P,
	UNEQ-P, PLM-P, RDI-P

The threshold to identify a violation of the allowed service disruption time (for all channels) is 1 to 1,000 ms. Violation is shown in summary results and channel table.

10/11 G Jitter and Wander Testing

Jitter Module 10G-E 1550 nm (BN 3076/90.75)

Combines with Module-E and includes jitter function at 9.953 G. The optical interface is 1550 nm.

Jitter Module 10G-E 1310/1550 nm (BN 3076/90.76)

Combines with Module-E and includes jitter function at 9.953 G. The optical interface is 1310/1550 nm.

Option Electrical Interfaces (BN 3076/90.77) This option for the Jitter Module 10G-E enables differential electrical Jitter functions.

Option Jitter 10.3G -E (BN 3076/90.70) Enables jitter at the service bit rate of 10.313 G to measure

synchronous Ethernet. Option Jitter 10.5G-E (BN 3076/90.63)

Enables jitter at the service bit rate of 10.519 G for 10G Fibre Channel

Option Jitter 10.7G-E (BN 3076/90.78) Enables jitter at the service bit rate of 10.709 G for OTN.

Option Jitter 10.75G-E (BN 3076/90.81) Enables jitter at the service bit rate of 10.755 G to measure unframed OTL3.4.

Option Jitter 11.05/11.1G-E (BN 3076/90.79) Enables jitter at the service bit rate of 11.049/11.095 G for OTN overclocked (OTU1e/OTU2e).

Option Jitter 11.18G-E (BN 3076/90.99) Enables jitter at the service bit rate of 11.181 G to measure unframed OTL4.10.

Option Jitter DS1/E1+BITS (BN 3076/90.74) Enables DS1/E1 and BITS jitter measurement capability to Jitter 10G or Jitter 2.5G module.

Standards

Jitter and wander are generated and analyzed in accordance with the following standards:

- ITU-T Recommendation 0.172 including Appendices VII + VIII with accuracy map support at 10 G
- ITU-T Recommendations 0.173 and 0.174
- ITU-T Recommendations G.825, G.8251, G.8261, G.8262
- Telcordia GR-253
- ANSI standards T1.101, T1.105, T1.105.03

Optical Interfaces

Supported bit rates for	9.953, 10.313, 10.519,
jitter/wander and	10.709,10.755, 11.049,
BER testing	11.095, 11.181 G
Wavelengths	1550 or 1310/1550 nm
Output level	typical 0 dBm
Max. TX bit rate offset	± 150 ppm
Receiver wavelength	1260 to 1580 nm
Sensitivity	−14 to −8 dBm
Max. input power (destructive)	+ 2 dBm
Max. RX bit rate offset	± 150 ppm (jitter)
	\pm 100 ppm (wander)
Connector types built-in optics	Exchangeable adapters

Electrical Interfaces

Reference Clock Output

Output frequency	All rates f/16, f/64 switchable
Output level (AC coupled)	Single 400 mVpp
	differential 800 mVpp
Connector	Two SMAs/50 Ω

Differential Electrical Interfaces (BN 3076/90.77)

A hardware option add-on to the Jitter 10G card provides differential electrical interfaces for all rates and signals from 9.95 up to 11.32 G.

Supported rates

Same as high-rate optical interfaces

Tx NRZ Data Out

Output rates	9.953 to 11.32 G
Tx offset	±500 ppm
Output level	Single 50 to 1100 mVpp
(AC coupled) adjustable	differential 100 to 2200 mVpp
Step size	1 mVpp
Connector	Two SMAs/50 Ω
High-Speed Tx Cloc	k Out
Clock is not phase aligned	with Rx data out
Source	Internal reference, from Rx, clock
	module inputs, sync clock in

Output frequencies	9.95 to 11.32 GHz
Tx offset	±500 ppm
Output level (AC coupled) selectable	Off, Iow, normal, high single 200, 300, 400 mVpp; differential 400, 600, 800 mVpp
Variation in 1% steps	±50%
Max. output level	1,000 mVpp
Connector	Two SMAs/50 Ω

Rx NRZ Data In

Built-in clock recovery.	
Input rates	9.95 to 11.32 G
Input offset	±200 ppm
Input level (AC coupled)	Single 100 to 1100 mVpp;
	differential 50 to 2200 mVpp
LOS detection diff.	Off, 120 mVpp typ.
Connector	Two SMAs/50 Ω
Sync Clock In Input clock is jitter filtered (~	10 Hz).
Input rates	f/16 and f/64 switchable
Input offset	±80 ppm
Input level (AC coupled)	Single 100 to 1,000 mVpp; differential 50 to 2,000 mVpp

Recovered clock (RX, BN 3076/90.77)

40 mVpp typ. Two SMAs/50 Ω

	, ,
Output frequency	Bit rate clock
Output level	typ. 500 mVpp (AC coupled)
Connector type	SMA 50 Ω

Eye clock output (TX)

LOS detection diff. (LTI)

Connector

Output frequency	1/16 of bit rate
Output level	Typ. 500 mVpp (AC coupled)
Connector type	SMA 50 Ω

Reference clock input (TX)

Input frequency	1/16 or 1/64 of bit rate
Input level	Typ. 50 to 2,000 mVp
Impedance	$2 \times 50 \Omega$, AC coupled, differential
Connector type	SMA

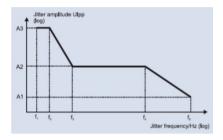
Specifications cont'd.

Jitter Testing

Jitter Generator

Meets or exceeds the requirements of ITU T

 Since wave


 Jitter modulation signal
 Sine wave

 Jitter amplitude
 up to 3200 Ulpp

 Amplitude resolution
 0.001 Ul

 Frequency range
 1 Hz to 80 MHz

 Frequency resolution
 0.1 Hz

Amplitude in [Ulpp]			Fi	requen	cy in [Hz]		
A1	A2	A3	f1	f2	f3	f4	f5
05	6	3200	10	100	50 k	6 67 M	80 M

Jitter Analyzer

Meets or exceeds the requirements of ITU T

Recommendations 0.172, 0.173 and 0.174.				
Measuring Range/Re	esolution (Standard)			
Peak-peak	0 to 50 Ulpp/1 mUlpp			
RMS	0 to 25 Ulpp/0.1 mUlpp			
Measuring Range/Re	esolution (Extended)			
Peak-peak	0 to 3200 Ulpp/0.1Ulpp			
RMS	0 to 1600 UI/0.01UI			
Measurement Filters				
High pass filter	20 kHz (HP 1), 50 kHz (RMS),			
	4 MHz (HP 2)			
Low pass filter	8 MHz (XFI), 80 MHz (LP)			
Measurement Accuracy				
Fixed error 1	5 mUlpp*, 20 mUlpp (<11 G),			
	25 mUlpp (>11 G)			
* Optical input power level -	-10 dBm to –12 dBm, mapping			
SDH VC-4/ SONET STS-1, payload pattern PRBS 2 ²³ -1,				
environmental temperature $+20^{\circ}$ C to $+30^{\circ}$ C.				

Demodulator Output

Connector/impedance	BNC/75 Ω
Output voltage	3 V/64 UI (standard range)
	3 V/4096 UI (extended range)

Jitter Measuring Modes

Current values	Peak-peak, positive peak,
(continuous measurement)	negative peak, RMS
Maximum values	Peak-peak, positive peak,
(gated measurement)	negative peak
Logged values	Peak-peak, positive peak,
(repetitive measurement)	negative peak

Parallel Measurement Filters

Results for all measurement bandwidth ranges are calculated simultaneously, e.g. HP1+LP, HP2+LP and RMS+LP. Ideal for reducing measurement time of jitter generation.

Phase Hits

The instrument detects when the programmable threshold for positive and negative jitter values is exceeded as well as how often it was exceeded. Max. count frequency is approx. 80 MHz (sine wave).

Jitter Versus Time

This function is used to record variations of jitter with time and allows the display of the positive and negative peak values, peak-peak values, and RMS values versus time. Duration is up to 99 days. Time resolution is 1 s.

Automatic Jitter Measurements

Selective Jitter Transfer Function (JTF) The JTF shows the ratio of the jitter amplitude at the output of the device under test (DUT) and at the input at various frequencies (max. 60). Standard tolerance masks are available and can be edited.

Maximum Tolerable Jitter (MTJ)

The Jitter module automatically determines the maximum jitter amplitude tolerated by the DUT at selected jitter frequencies (max. 60). Precisely determine the maximum permissible jitter amplitude using a successive method. The module determines the exact limit value. Several error sources are selectable. Standard tolerance masks are available and can be edited.

Fast Maximum Tolerable Jitter (Fast-MTJ)

This extremely fast measurement tests the device under test for conformance to the standard tolerance mask limits for maximum tolerable jitter. The editable frequency/amplitude values are set sequentially and the test pattern is monitored for the permitted threshold by the receiver. The result of each measurement is shown in a table as a status message.

Wander Testing

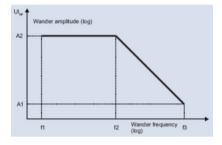
Wander 10/11G (BN 3061/93.95)

This software option is only available in conjunction with Jitter modules (BN 3076/90.75 or /90.76) and enables wander generation (sine wave) and analysis at 9.953 G, 10.313/ 10.519/10.709/10.755/11.049/ 11.095/11.181 G (optional). Fully complies with or exceeds the requirements of ITU-T 0.172, 0.174.

Wander 10/11G Expert (BN 3061/93.97)

This software option adds white/TDEV noise and MTIE transient to BN 3061/93.95 and /93.96, and enables the wander transfer function, phase transient, phase build-out, offset in ppb. White/TDEV noise and MTIE transient are according to Telcordia GR-253, ANSI T1.101, and ITU-T G.812/13, G.8261/G.8262 (SyncE).

Wander DS1/E1+ BITS (BN 3061/93.96)


This software option is only available in conjunction with Wander 10/11G (BN 3061/93.95) and enables wander generation (sine wave) at DS1/E1 and BITS/SETS, and supports wander analysis at DS1/E1.

Wander BITS Expert (BN 3061/90.74)

This hardware option is only available in conjunction with Wander DS1/E1 + BITS (BN 3061/93.96). It supports 1 pps signal generation and analysis, enables injection of signal interruptions and wander measurements on clock signals. It complements the reference input signals with 64/6312 kHz.

Wander 10/11G (BN 3061/93.95)

Modulation signal	Sine wave
Amplitude range	0.1 to 320 000 UI
Amplitude resolution	0.1 UI
Frequency range	10 µHz to 10 Hz
Frequency resolution	1 μHz
Generator accuracy	Conforms to ITU-T 0.172, 0.174

Amplitude i	Freq	uency in	[Hz]	
A1	A2	f1	f2	f3
16 000 UI	320 000 UI	10 µHz	0.5 Hz	10 Hz
Wander 1	10/11G Expe	ert (BN 30	61/93.	97)
Additional	Modulation Sigi	nals		
White noise			10 t	o 150 Hz
TDEV noise	Con	forms to ITU	-T, Telcor	dia, ANSI
MTIE transie	nt	Conforms	to ITU-T,	Telcordia
Phase transi	ent	Linear, e	xponentia	al, cosine
Phase build	out			Linear
ppb-offset g	jeneration	-100,000	to +100	,000 ppb
Wander I	DS1/E1+BIT	S (BN 306	51/93.9	6)
Accordingt	o ITU-T G.703			
Data signal	,	F, AMI), E1 (P		
Clock signal	1544, 2048,	6312, CC64 k	Hz (G.70	3 App. II)
Connector		Bantan	n 110 Ω, E	3NC 75 Ω
Clock signal				10 MHz
Connector			E	BNC 75 Ω
Modulation			-	ine wave
	nodulation signa			
	BITS Expert	-		-
Signals	1 pp	s, CC64 kHz,		
Connector				BNC 75 Ω
Output leve			0.00	3900 mV
Pulse width				:o 500 µs
Modulation			-	ine wave
		Offset in ppt		
M		Signal inte	erruption	
Measureme	nt	1 nnc nulc	o width o	Wander nd dolay
PN 2076/00	.74 includes an e	1 pps puls		
anced signa				i hhz ngi-
5	n. Measuremei			
Data signal	ference Signal Ir	iput		DS1, E1
Clock signal		(C64/64/6	
CIUCK SIGHT	(RM	V 3061/90.74		
	(DI	1 300 1/ 30.72	r), 1344/2	LUTO KIIZ

Bantam 110 Ω , BNC 75 Ω

1, 5, 10 MHz

BNC 75 Ω

Connector

Clock signal

Connector

Specifications cont'd.

Measurement Filters

Sampling rate - Low-pass filter	1/s — 0.1 Hz,
	30/s – 10 Hz (0.172),
	60/s - 20 Hz,
	1,000/s - 100 Hz (0.172)

Result Display

Time interval error (TIE)	Numerically, graphically
Peak-peak TIE	Numerically
Frequency offset	Numerically
Frequency drift rate	Numerically
Measurement accuracy	Conforms to ITU-T 0.172, 0.174

TIE values are recorded and available for MTIE/TDEV evaluations and frequency offset and drift rate measurements with graphs and built-in masks that comply with Telcordia GR-253, GR-1244, ANSI T1.101, ETSI ETS 300 462, EN 302 084, ITU-T 0.172/0.174 G.810 to G.813, and G.8261/G.8262 (SyncE) recommendations.

Automatic Wander Measurements Maximum Tolerable Wander (MTW)

This application tests the DUT for conformance to the standard tolerance mask limits for wander tolerance and is available in connection with the wander generator. The DUT is subjected to wander at several amplitudes and frequencies and the output signal is monitored for different error sources. The measurement point is then marked as "Pass" (no alarms or errors detected) or "Fail" (alarms or errors detected).

WanderTransferFunction(WTF, BN 3061/93.97) Automatic measurement of the wander transfer function (WTF) is provided by the combination of a wander generator and wander measurement. The wander generator applies a TDEV shaped noise signal to the input of the device under test (DUT). The transferred wander output signal of hte DUT is measured and a TDEV analysis of the measurement is performed repeatedly. The TDEV result curve is compared to the user selectable TDEV mask and each point of the TDEV result is marked as "Pass" or "Fail".

External Wander Analysis SW (BN 3061/95.98) PC software for wander evaluation, Import of TIE data from ONT/ANT-20, Analysis of TIE/MTIE/TDEV/FF0/FFD

155M/2.7G Jitter and Wander Testing

Jitter Module 2.5G-D 1550 nm (BN 3076/90.66) Combines with Module-E and includes jitter function at 155/622 Mbps, 2.5 G. The optical interface is 1550 nm.

Jitter Module 2.5G-D 1310/1550 nm (BN 3076/90.67)

Combines with Module-E and includes jitter function at 155/622 Mbps, 2.5 G. The optical interface is 1310/1550 nm.

Option Jitter 1.25G -D (BN 3076/90.69)

Enables jitter at the service bit rate of 1.25 G to measure synchronous Ethernet.

Option Jitter 2.7G-D (BN 3076/90.68) Enables jitter at the service bit rate of 2.7 G for OTU1.

Option Jitter DS1/E1+BITS (BN 3076/90.74)

Enables DS1/E1 and BITS jitter measurement capability to Jitter 10G or Jitter 2.5G module.

Standards

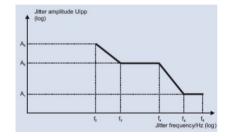
Jitter and wander are generated and analyzed in accordance with the following standards:

- ITU-T Recommendation 0.172 including Appendices VII + VIII with Accuracy Map support at 2.5 G
- ITU-T Recommendations 0.173 and 0.174
- ITU-T Recommendations G.825, G.8251, G.8261, G.8262
- Telcordia GR-253
- ANSI standards T1.101, T1.105, T1.105.03

Optical Interfaces

Supported bit rates	155/622 Mbps,
for Jitter/wander and BER testing	1.25/2.5/2.7 G
Wavelengths	1550 or 1310/1550 nm
Output level	typical 0 dBm
Max. TX bit rate offset	± 50 ppm
Receiver wavelength	1260 to 1580 nm
Sensitivity for BER testing	-28 to -8 dBm
Max. input power (destructive)	+ 3 dBm
Max. RX bit rate offset	± 20 ppm
Connector types built-in optics	Exchangeable adapters

Electrical Interfaces (155/622 Mbps, 1.25/2.5/2.7 G)


TX signals	Data output
	(Eye) clock output
RX signals	Data input
	Recovered clock output
Impedance	50 Ω single-ended, AC coupled
Connector type	SMA
Output level	>200 mVpp
Input level	200 to 1,000 mVpp

Jitter Testing

Jitter Generator

Meets or exceeds the requirements of ITU T

Recommendations 0.172, 0.173,	and 0.174.
Jitter modulation signal	Sine wave
Jitter amplitude	up to 800 Ulpp
Amplitude resolution	0.001 UI
Frequency range	10 Hz to 20 MHz
Frequency resolution	0.1 Hz

Bit	An	nplitu	ıde		F	requer	су	
rate	iı	ı[Ulp	p]			in [Hz	1	
	A1	A2	A3	f1	f2	f3	f4	f5
155 M	0.2	2	50	20	500	6.5k	65k	1.3M
622 M	0.2	2	200	10	1k	25k	250k	5M
1.25 G	0.2	2	400	12.5	2.5k	50k	500k	10M
2.5/2.7 G	0.2	2	800	12.5	5k	100k	1M	20M

Jitter Analyzer

Meets or exceeds the requirements of ITU T Recommendations 0.172, 0.173 and 0.174.

Meas	surin	g Ran	ge/Resolution (Standard	i)
Peak-p	eak		0 to 50 Ulpp/1 ml	Jlpp
RMS			0 to 25 Ulpp/0.1 ml	Jlpp
		-		

measuring Range/Resolution (Extended)		
Peak-peak	0 to 800 Ulpp/0.1Ulpp	
RMS	0 to 400 UI/0.01UI	

Accuracy Of The Measurement

Standard range (2.5 G) Fixed error 25 mUlpp* * Optical input power level -10 to -12 dBm, mapping SDH VC-4/SONET STS-1, payload pattern PRBS 2³¹-1, ambient temperature +20 to +30°C.

Built-In Filters

High-pass filters	500 Hz, 1 kHz, 2.5 kHz, 5 kHz,
	12 kHz, 65 kHz,
	250 kHz, 500 kHz 1 MHz
Low-pass filter range	1.3, 5, 10, and 20 MHz
Extended range	25 Hz to 400 kHz
Demodulator Outpu	ıt
Connector/impedance	BNC/75 Ω
Output voltage	3 V/64 UI
Jitter Measuring Mo	des
Current values	Peak-peak, positive peak,
(continuous measurement)	negative peak, RMS
Maximum values	Peak-peak, positive peak,
(gated measurement)	negative peak
Logged values	Peak-peak, positive peak,
(repetitive measurement)	negative peak

Parallel Measurement Filters

Results for all measurement bandwidth ranges are calculated simultaneously, e.g. HP1+LP, HP2+LP and HP12+LP. Ideal for reducing measurement time of jitter generation.

Phase Hits

The instrument detects when the programmable threshold for positive and negative jitter values is exceeded as well as how often it was exceeded.

Jitter Versus Time

This function is used to record variations of jitter with time and allows the display of the positive and negative peak values, peak-peak values, and RMS values versus time. Duration is up to 99 days. Time resolution is 1 s.

Automatic jitter measurements

Selective Jitter Transfer Function (JTF) The JTF shows the ratio of the jitter amplitude at the output of the device under test (DUT) and at the input at various frequencies (max. 60). Standard tolerance masks are available and can be edited.

Specifications cont'd.

Maximum Tolerable Jitter (MTJ)

The jitter module automatically determines the maximum jitter amplitude tolerated by the DUT at selected jitter frequencies (max. 60). Precisely determine the maximum permissible jitter amplitude using a successive method. The module determines the exact limit value. Several error sources are selectable. Standard tolerance masks are available and can be edited.

Fast Maximum Tolerable Jitter (Fast-MTJ)

This extremely fast measurement tests the device under test for conformance to the standard tolerance mask limits for maximum tolerable jitter. The editable frequency/amplitude values are set sequentially and the test pattern is monitored for the permitted threshold by the receiver. The result of each measurement is shown in a table as a status message.

Wander Testing

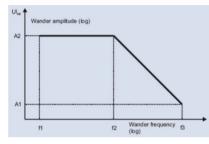
Wander 2.5/2.7G (BN 3061/93.92)

This software option is only available in conjunction with jitter modules (BN 3061/90.66 or /90.67) and enables wander generation (sine wave) and analysis at 155/622 Mbps, 2.5 Gpbs, 1.25 G (optional), 2.7 G (optional). Fully complies with or exceeds the requirements of ITU-T 0.172, 0.174.

Wander 2.5/2.7G Expert (BN 3061/93.89) This software option adds white/TDEV noise and MTIE transient to BN 3061/93.92 and /93.96, and enables the wander transfer function, phase transient, phase build-out, offset in ppb. White/TDEV noise and MTIE transient are according to Telcordia GR-253, ANSI T1.101, and ITU-T G.812/13, G.8261/G.8262 (SyncE).

Wander DS1/E1 + BITS (BN 3061/93.96)

This software option is only available in conjunction with Wander 2.5/2.7G (BN 3061/93.92) and enables wander generation (sine wave) at DS1/E1 and BITS/SETS, and supports wander analysis at DS1/E1.


Wander BITS Expert (BN 3061/90.74)

This hardware option is only available in conjuction with Wander DS1/E1 + BITS (BN 3061/93.96). It supports 1 pps signal generation and analysis, enables injection of signal interruptions and wander measurements on clock signals. It complements the reference input signals with 64/6312 kHz.

Wander 2.5/2.7 G (BN 3061/93.92)

Modulation signal	Sine wave
Amplitude range	0.1 to 100,000 UI

 Offset
 A1
 A2
 f1
 f2
 f3

 0 ppm
 4,000 UI
 100,000 UI
 10 μHz
 0.5 Hz
 10 Hz

 Wander 2.5/2.7 G Expert (BN 3061/93.89)

Additional modulation signals

White noise	10 to 150 Hz
TDEV noise	Conforms to ITU-T, Telcordia, ANSI
MTIE transient	Conforms to ITU-T, Telcordia
Phase transient	Linear, exponential, cosine
Phase build out	Linear
ppb-offset generation	-100,000 to +100,000 ppb

Wander DS1/E1+ BITS (BN 3061/93.96) According to ITU-T G.703

Data signal	DS1 (ESF, AMI), E1 (PCM31 CRC, HDB3)	
Clock signal	1544, 2048, 6312, CC64 kHz (G.703 App. II)	
Connector	Bantam 110 Ω, BNC 75 Ω	
Clock signal	10 MHz	
Connector	BNC 75 Ω	
Modulation sig	gnal Sine wave	
For additional modulation signals, see BN 3061/93.89.		

Wander BITS Expert (BN 3061/90.74)

	• •
Signals	1 pps, CC64 kHz, 1.5/2/6.3/10 MHz
Connector	BNC 75 Ω
Output level	0 to 3900 mV
Pulse width	0.5 to 500 µs
Modulation	Sine wave
	Offset in ppb (BN 3061/93.89)
	Signal interruptions on BITS
Measurement	Wander
	1 pps pulse width and delay

BN 3061/90.74 includes an external converter for 1 pps balanced signals.

Wander Measurements

Measurement Filters

Res

npling rate — Low-pass filter	1/s – 0.1 Hz,
	30/s - 10 Hz (0.172),
	60/s - 20 Hz,
	1,000/s - 100 Hz (0.172)
ult Display	

Time interval error (TIE)	Numerically, graphically	
Peak-peak TIE	Numerically	
Frequency offset	Numerically	
Frequency drift rate	Numerically	
Measurement accuracy	Conforms to ITU-T 0.172, 0.174	
TIE values are recorded and available for MTIE/TDEV		
evaluations and frequency offset and drift rate		
measurements with graphs and built-in masks that comply		
with Telcordia GR-253, GR-1244, ANSI T1.101, ETSI ETS 300		
462, EN 302 084, ITU-T 0.172/0.174 G.810 to G.813, and		
G.8261/G.8262 (SyncE) red	commendations.	

Automatic Wander Measurements Maximum Tolerable Wander (MTW)

This application tests the DUT for conformance to the standard tolerance mask limits for wander tolerance and is available in connection with the wander generator. The DUT is subjected to wander at several amplitudes and frequencies and the output signal is monitored for different error sources. The measurement point is then marked as "Pass" (no alarms or errors detected).

WanderTransferFunction (WTF, BN 3061/93.89)

Automatic measurement of the wander transfer function (WTF) is provided by the combination of a wander generator and wander measurement. The wander generator applies a TDEV shaped noise signal to the input of the device under test (DUT). The transferred wander output signal of hte DUT is measured and a TDEV analysis of the measurement is performed repeatedly. The TDEV result curve is compared to the user selectable TDEV mask and each point of the TDEV result is marked as "Pass" or "Fail".

External Wander Analysis SW (BN 3061/95.98) PC software for wander evaluation, Import of TIE data from ONT/ANT-20, Analysis of TIE/MTIE/TDEV/FF0/FFD

Test & Measurement Regional Sales

 NORTH AMERICA
 LATIN AMERICA
 ASIA PACIFIC

 TOLL FREE: 1 855 ASK-JDSU
 TEL: +1 954 688 5660
 TEL: +852 2892 0990

 (1 855 275-5378)
 FAX: +1 954 345 4668
 FAX: +852 2892 0770

EMEA TEL: +49 7121 86 2222 FAX: +49 7121 86 1222 WEBSITE: www.jdsu.com/test

Product specifications and descriptions in this document subject to change without notice. © 2012 JDS Uniphase Corporation 30173310 000 1012 ONTMODULESPECS.DS.TFS.TM.AE