

T-BERD®/MTS-4000 Multiple Services Test Platform

Last Mile OTDR Module

Key Features

- 34/32 dB Dynamic Range at 1310/1550 nm
 - High resolution and short dead zone for distribution fiber qualification
- Instantaneous traffic detection when connecting live fiber
- First-to-market OTDR integrating a true Loss Test Set function
- In-service testing dedicated wavelengths (1625 or 1650 nm)
- Automated bend detection
- Field-replaceable without tools
- Possible combination with Triple-Play function, xDSL, Copper, and PON power meter modules

Applications

- Ideal for Short-Haul and premises networks construction as well as maintenance
- Allows point-to-point (P2P) FTTx feeder fiber characterization
- Performs FTTx distribution and drop cable verification and continuity check

In today's telecommunications market, optical time domain reflectometer (OTDR) test solutions must be cost-effective, easy-to-operate, and flexible for optimum use in all testing conditions. The JDSU Last Mile (LM) OTDR Module for the T-BERD/ MTS-4000 Multiple Services Test Platform meets these challenges for both now and the future.

The LM OTDR Module provides the needed performance with maximum efficiency for any access and premises networks.

The small form factor of the T-BERD/MTS-4000 platform and lightweight design make it easy to carry in the field. Also, its large screen and comprehensive interface make results easy to interpret and understand even for novice technicians.

Last Mile OTDR Applications

The Last Mile refers to the last part of a broadband network driving high-capacity services to the end-user, home and business area. The two main architectures are passive optical networks (PON) or point-to-multipoint using xPON technology and point-to-point (P2P) using active Ethernet technology.

Combining fast acquisition time, sharp resolution (1 m event dead-zone) and 34 dB dynamic range makes the LM OTDR module an ideal companion for:

– Central Office installation to ensure network quality at OLT and fiber distribution frame levels

- Detailed events commissioning of point-to-point fiber section links

– Troubleshooting faulty customers using out-of-band wavelengths (1625 or 1650 nm) without disturbing live traffic

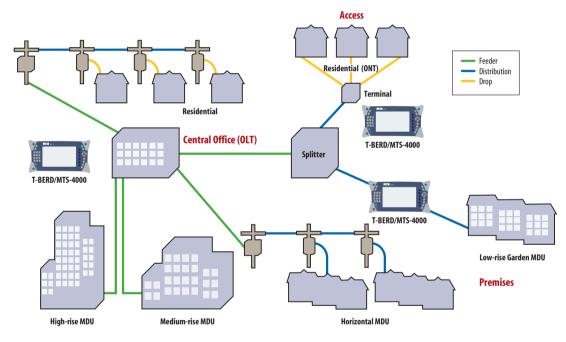


Figure 1 Typical FTTP Infrastructure

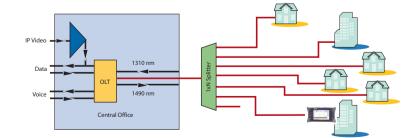


Figure 2 In service Pon Network troubleshooting

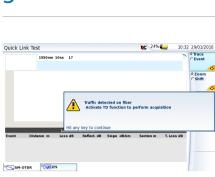


Figure 3 Result view - Traffic detection

Enhanced User Interface for Improved Productivity

Traffic Detection

The automatic traffic detection capability verifies the presence of a signal as soon as the fiber under test is connected to the OTDR port and reduces the chance of conducting unwanted measurements on live fiber. In one direction, the OTDR signal emission could affect the optical transmitter; and in the other direction, the transmission signal could affect the measurement quality and perhaps damage the OTDR receiver. To avoid these risks, the OTDR displays an on-screen warning when detecting a signal—or modulation—that prompts technicians to confirm or cancel the measurement.

The Right Test Mode for the Right Job!

The LM OTDR features four operating modes to meet the needs of technicians:

- A Fault Locator to boost productivity in the field with a fully automatic, one-button operating mode that requires no additional settings. It gives the location of the fiber end, total loss, and ORL of the link.
- The Quick-link Test combines automatic acquisition setup with detailed trace analysis, offering unmatched ease of use for novice or intermittent users.
- The Construction mode offers high-level trace analysis, making the LM OTDR a powerful instrument for fiber commissioning.
- The Real-time mode helps technicians achieve optimal setups by providing instant measurement values and feedback on changes with direct access to the acquisition parameters in the result view. This mode also offers an auto "Zoom to End" key that is useful when adjusting connectors or splicing.

Initial Fiber Connection Check

At the beginning of an acquisition, a measurement of the front connection is provided with level indication so that field technicians perform measurements in optimal conditions.

Macro-Bend Detection

With its dual-wavelength testing capability, the LM OTDR automatically locates and displayes macro-bends, shortening analysis time, especially when troubleshooting a fiber link.

	Sum	mary Table	
Laser	T. Loss	Total Orl	T.Length
nm	dB	dB	m
1550	5.759	< -9.00	1294.13
1625		< -9.00	
	Benc	i Table	
Bend dB		Distance m	
0.652		1271.88	
	0.052		

Figure 6 Summary table & bend table

Figure 4 Quick link test

Figure 5 Real time mode -Total loss measurement

Innovative and Audacious Test Function Implementation

In-Service Maintenance

The LM OTDR module supports in-service PON measurements based on the ITU-T L41 Recommendation: Maintenance Wavelength on Fibers Carrying Signals, which enables in-service measurements using out-of-band wavelengths (1625 or 1650 nm) to avoid interference with the optical link or CO laser transmitter performance. The LM OTDR module features filtered 1625 and 1650 nm out-of-band wavelengths (where traffic would not be distributed) allowing for rejection of unwanted signals (1310, 1490, and 1550 nm) that could interfere with the OTDR measurement.

Integrated Loss Test Set

Source Config.

> Keep Result

Clear

The OTDR port operates as a laser source to provide continuous wave and standard modulations, as well as integrating a power meter. These two functions enable a full-featured loss test set, reducing the cost of goods, the number of tools to carry in the field, and the time for testing Access/FTTx networks.

Error-Free Professional Report

Featuring a PDF writer and reader, the T-BERD/MTS-4000 platform enables generating and recalling .pdf test reports directly from the built-in explorer without using an offline software program.

For more integrated reports, a PC-based software application within a true Microsoft Windows environment enables detailed generation of professional OTDR trace reports.

- Proof-of-performance
- Full-customizable report
- Dedicated tables for each test result
- Out-of-range value summary with Pass/Fail indicators
- Analysis of macro-bends

Figure 7 Loss Test Set results

Figure 8 Reports

General Technical (Typical at 25°C)		
Weight	0.35 kg (0.77 lb)	
Dimensions (W x H x D)	128 x 134 x 40 mm	
	(5.04 x 5.28 x 1.58 in)	
Storage	Bellcore/Telcordia-compatible (Version 1.1 and Version 2.0)	

Optical interfaces	
Applicable fiber	SMF 9/125 μm
Interchangeable optical connectors	FC, SC, DIN, LC
	(PC or APC) and ST (PC)

Technical characteristics

Laser safety class (21 CFR)	Class 1		
Distance units	Kilometers, feet, and miles		
Group index range	1.30000 to 1.70000 in 0.00001 steps		
Number of data points	Up to 128,000 data points		
Distance measurement	Automatic or dual cursor		
Display range	0.5 km to 160 km		
Cursor resolution	1 cm		
Sampling resolution 4 c			
Accuracy ±1 m ±sa	± 1 m \pm sampling resolution ± 1.10 -5 x distance		
(Excluding group index uncertainties)			

Attenuation measurement				
Automatic, manual, 2	-point, 5-point, and LSA			
Display range	1.25 to 55 dB			
Display resolution	0.001 dB			
Cursor resolution	0.001 dB			
Linearity	±0.04 dB/dB			
Threshold	0.01 to 5.99 dB in 0.01 dB steps			
Reflectance/ORL measurements				
Reflectance accuracy	±2 dB			
Display resolution	0.01 dB			
Threshold	-11 to -99 dB in 1 dB steps			
Power meter (option	nal)			
Power level	−2 to −50 dBm			
Measurement wavelengths ¹	1310, 1490, 1550, 1625,			
	and 1650 nm			
Measurement accuracy	±0.5 dB			

OTDR Module Technical (Typical at 25°C)

These are standard specifications, representing only a selection of the JDSU offerings. For specific requirements, please contact your local JDSU representative.

Central wavelength ³	1310±20 nm	1550±20 nm	1625±10 nm	1650±20 nm	
Pulse width		3 ns	to 20 µs		
RMS dynamic range ⁴	34 dB	32 dB	32 dB	30 dB	
Event dead zone⁵		1	m		
Attenuation dead zone ⁶		4	m		

Ordering Information

Description		Product Number
Last Mile 1310/1550 nm OTDR Module		E4126LM
Last Mile1310/1550/1625 nm OTDR Modul	le	E4136LM
Last Mile 1310/1550/1650 nm OTDR Modu	ıle2	E4138LM65
Last Mile 1310/1550 nm and Filtered 1625 nm Module		E4136RLM
Last Mile Filtered 1650 nm OTDR Module		E4118RLM65
Continuous and modulated source option		E410TDRLS
Power meter option		E410TDRPM
Universal optical connectors		
Straight connectors	EUNIPCFC, EUNIPCS	C, EUNIPCST, EUNIPCDIN, EUNIPCLC
8° angled connectors	EUNIAPCFC, EU	NIAPCSC, EUNIAPCDIN, EUNIAPCLC

- (1) Modules with filtered wavelengths allow power measurement at same wavelengths as OTDR.
- (2) Source feature not available at 1650 nm with the tri-wavelength version 1310/1550/1650 nm.
- (3) Laser at 25°C and measured at 10 $\mu s.$
- (4) The one-way difference between the extrapolated backscattering level at the start of the fiber and the RMS noise level, after 3 minutes averaging and with a high dynamic resolution.
- (5) At 1310 nm and ± 1.5 dB down from the peak of a -27 dB reflective event.
- (6) At 1310 nm and \pm 0.5 dB from the linear regression using an unsaturated -55 dB reflective event.

For more information on the T-BERD/MTS-4000 test platform, please refer to the separate datasheet and brochure.

Test & Measurement Regional Sales

NORTH AMERICA	LATIN AMERICA	ASIA PACIFIC	EMEA	WEBSITE: www.jdsu.com/test
TEL: 1 866 228 3762	TEL: +1 954 688 5660	TEL: +852 2892 0990	TEL: +49 7121 86 2222	·
FAX: +1 301 353 9216	FAX: +1 954 345 4668	FAX: +852 2892 0770	FAX: +49 7121 86 1222	